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Abstract

For the case of gravity-capillary waves (A ~ 1 cm) the exact equations
for the wave motion in air and water are derived. Effects of viscosity
and surface tension are included. A closed expression for the growth-

Pg-and R,
W w
the Reynolds number in water. This expression is compared to the results

rate of the waves is found by expanding the equations in é=

of Miles. The expression still contains an unknown perturbation stream-
function in air. This streamfunction is determined for the case of a linear
wind profile. In this linear wind profile (LWP) model it is a linear
combination of an exponential function and a weighted integral of the

Airy function. By estimating the integral with the use of an ex2ansion

in Ra2/3 growth is shown to be possible (eqg. V.B2). The range of validity
of V.62 is investigated. It is valid for a fairly small wavenumber interval.
In this interval, however, there is good agreement with numerical results

of Kawai which in turn have been confirmed experimentally.
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I. Introduction

Consider the case of no wind and a perfectly calm sea. Suddenly the wind
rises. Though the watersurface looked flat probably some extremely small
disturbances were present. These can be seen as waves with infinitesimally
small amplitudes. These waves, however small, in“luence the air flow. The
changed flow in its turn has an effect on the infinitesimal waves, For
certain wavenumbers these reciprocal influences may be such that the

corresponding waves grow; the sea no longer appears smooth but ripples

are seen.

The situation described above is the basic idea of the mechanism of
instability of shear flow. The adjective shear is used to indicate that
the wind speed depends on the height. Recently considerable evidence has
been collected to show that indeed the instability mechanism can be used

to describe wave growth in its initial stages (Valenzuela, '76,

Kawai, '79).

The study of instability of shear flows dates from the end of the nine-
teenth century. Miles in 18957 was the first to seriously introduce
stability analysis as a way of describing wave growth. In an inviscid
approach to the problem he found that the curvature at the critical
height - the height where the air speed equals the wave speed - is the
essential feature of the wind profile. If no curvature at the critical

height exists no instability is found.

This implies that only larger waves (1.3-30 cm) cculd grow directly due

to the wind. This follows from the typical wind orofile. Very zlose to

the watersurface the wind increases linearly with height (thus no curvature),
from * 0,5 mm onwards the increase is logarithmic. Roughly speaking, for
waves with wavelength of 30 cm or less the critical height is within the
linear part of the profile, so these waves could never grow. This is in

contradiction with every-day experience and with measurements by Kawai ('79).

In this paper the equations governing the growth of gravity-capillary waves
are solved. In this way the contradiction mentioned above in helped out of
this world. In chapter II a mathematical description of fluid motion is
given. From the general case the equations specific for small amplitude

waves on an interface of two fluids are derived. These are the Orr-Sommerfeld

equation and the continuity conditions at the interface. In chapter III a



theoretical argument is given for the windprofile in the atmosphere up
to a height of 10 m. Alsc attention is paid to the flow in the water.
Chapter IV contains a historical review of the use of the instability

theory to describe the growth of waves. It centers round the theory of

Miles mentioned above.

The next chapters contain original research. In chapter V I solve the

viscid Orr-Sommerfeld equations plus boundary conditions for the case

of gravity-capillary waves ( A~ 1 cm). The phase velocity is found

(V.37) and an expression for the growth-rate (V.41), still containing the
unknown streamfunction in air. For the special case of a linear wind

profile - the LWP model - the streamfunction in air is solved. In the LWP
model the growth is approximately determined (V.62). In chapter VI I discuss
various aspects of the theory developed in chapter V. It turns out that

the apparent contradiction mentioned above does not exist as Miles'

theory is valid only when viscosity can be neglected. The LWP model does
predict growth. The rarge of validity of the expressions V.37, 41 and

B2 is considered. The values for the phase velocity and for the growth-

rate obtained from the mentioned expressions are compared to numerical
values. Another topic is the term dominating the transfer of energy from
wind to waves. Chaper VII contains the conclusions I drew from the

foregoing chapters. An important conclusion is that viscosity is responsible
for the instability found in the LWP model. This possible effect of

viscosity is not widely recognized, though Reynolds already speculated
about it.



II. Fluid Dynamics.

To describe the waves at the watersurface and the mechanism for their
growth knowledge is necessary of the motions of the fluid everywhere in
water and air. This knowledge can be found in the theory of fluid dynamics .,
In the present chapter the complete set of equations governing fluid flow
is recapitulated. First the equations are formulated as to pe valid for

any fluid motion. Then step by step it is shown how they can te made more
specific for the case of Waves on an interface of air and water. The final

results is the Orr-Sommerfeld equation plus boundary conditions.

The equations are expressed in 6 variables: G, the velocity, P, the
pressure, e the density, and T, the temperature. All the variables depend
on x, the location in Space, and t, the time. The complete set of equations

governing fluid flow is given by five conservation laws and the ecuation

of state (cf. Batchelor '81, p. 164):

conservation of mass: 1? g% +V.u=0

tonservation of momentum:

. d o s
ooy = oFi- $F R {aples-3 A‘S‘S)}

*i
du.  du,
e . = 1 (=1« ) II.1
i3 * Cax. T ox. )
j i
A - e, = V.0

the viscosity

/.l

F = body force per unit

mass of fluid

conservation of energy: T o5 ¢ L1 2 ke or

n

)
Dt e ><i H §xi
S = entropy per unit mass
kH = thermal conductivity
_ 2N 1,2
q) = ( [eijeij SA )

Effects of damping have been ignored in the ejuation for conservation of

energy. ? and T are chosen as the two parameters of state. }Iand kH are
regarded as known functions of them.

The equation of state depends on the nature of the fluid.

equation of state: F[P,p,TJ =0



In addition to these equations there are boundary conditions to be
fulfilled.

For the present case the following assumptions are Jjustified (Batchelor,
'81, p. 174):

- the fluid is incompressible and no other effects are present that could

cause the density to vary during its evolution. Also the density is the

sare everywhere in the fluid.

- the temperature is constant in time and space.

Due to these assumptions the equations of state and of conservation of

energy become irrelevant and are supplemented by
eti, )= T (x, t] =T

Two other assumptions are

- *;is constant in time and space (this follows from ? and T being constant).

- the only body force present is the gravitational force é.

The eguations now read:
V.u =0 I1.2
Du _, - _g 2 -
?ﬁﬂ;g RLIRT L I1.3

The first of these is called the continuity ecuation; the secong is the
Navier-Stokes equation. The boundary conditions cannot be specified yet;

they still depend on, for instance, the geometry of space occuped by the
fluid.

In the present case equations II.2 and II.3 have to be solved for air and
for water in such a way that the solutions are matched correctly at the
free interface and that the boundary conditions are satisfied. To this end
the next assumptions are that turbulence and other nonlinear features of
the flow can be neglected in both air and water. This is justified in part
as the main interest will lie in a region very close to the interface and

in this region the flow is laminar (Miles, '59). Also Valenzuela ('76) notes
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that as the instability in shear flow, which is a linear effect, can
account for the measured growth-rates of gravity-capillary waves there
is no need to introduce other features, which mistify the essentials and

bring along a lot of cumbersome work.

To describe the situation of a large sea and air above it I take the water

to occupy the half infinite region

y & Yl[x,z,t)
y is taken to be the vertical and N is the interface. The position of the
interface still has to be determined. The air is taken to fill the rest of
space. All quantities are supposed uniform in the z-direction end the

argument z will be dropped from now on.

The boundary conditions at the interface are (Batchelor, '81, p. 148-150):

kinematical condition: %% = v ony =9 (x,t) IL.4

c
n

velocity in x -direction

<
[

= velocity in y-direction

From the kinematical condition the form of the free surface can be derived
and the continuity of the normal component of the velocity. The tangential

component of the velocity is continuous due to viscosity (cf. Batchelor, '81,
p. 148-149):

u, =4, ony =N (x,t) II.5

the suffix a stands for air; w for water.

continuity of shearing stress:

VMa eijatinj =/Jweijwtinj ony =¥ (x,t) II.6

the tensor eij is defined by II.1, t is a vector tangential to the surface

and N is a vector normal to the surface.



Continuity of normal stress:

1
-2 = - -
Da eava (eijaninj) Pw ZPwvweijwninj + T =
on y =N (x, t) I11.7

R is the local radius of the curvature of the surface, T is the coefficient

for the surface tension and VY = & is the kinematical viscosity.

A further simplification is an expansion of all the guantities in a small
parameter. As small parameter €, the wave steepness, is taken. The zeroth
order or basic flows are independent of the waves. They are the wind and
the wind-induced surface current. The waves are small perturbations of
these flows. The amplitude of the waves is supposed small enough to justify
only first order expansions being used. If the waves grow the basic flows

are no longer stable.

The btasic flows are taken to be simple shearing motions; in chapter III the

exact preofiles are given. They are indicated with capital letters and

directed in the horizontal plane:

U . =U_ (y) V_ =20 yan

U =uU (y) V =0 yen

The interface is taken to be flat when no waves are present:
H (x,t) =0

It can be verified that for these flows it is possible to satisfy II.2 - II.7.

The conditions at the interface become:
Ua[o) = UW[D]
f%Ué[o] = PWUQ(O) I1.8
Pa(o] = Pw(o]

The eguations II.2 and II.3 and the conditions at the interface are

linearized around these basic flows to obtain equations governing the

wave-like perturbations. To this end all quantities are explicitly

expanded:



u = U, +§ .(13 i=aorw
i i i
v, = fVF1)
i i
1
P, = p, +vep()
i i i
_ M
Y, = H +€q

The linearized forms of the Navier-Stgokes equations are

aum _B__\_‘:.) (,)ﬂ ) 3 b 0 bzuu) é:—m)
>t ax v oy _-Q 3 v +9(by‘ ¥ b\,‘

\ T o)
AN BT Yy D
3t tUsY TTery tolse e )

The continuity equation becomes

0 (1, 0 1)
b—x-u +ry-v = 0
The conditions at the interface are

) (O]
M + U &l = \/(1J

5t b x ony = (C
(M _ M 1y M B
=y u =y ony =0
a w a W
. ) Y
_b_l_'"_:.) + 9_!;)* ) g_lli_q' éﬁ’ + -é-!w + (l)é‘il_l-w
rk[ 3y LR ] ay‘J-[m dy dx n 5y‘
on  y=o
X D
(qu; ) -éﬁl)igﬁ + EX; = “)Efw + W
(RIS N Y R g v By ATy Tt ox
\ L 0y
Mol 3w Py
..2/""[-‘3—; "S';/ + 'ﬁ" +7 > % on  y=o

At infinite depth and height the disturbances are taken to vanish:

p = Uy =y = yr~.+w

II.9

IT.10

II.11

II.12

IT.13

IT.14

II.186

II.17

When it is not indicated whether a quantity is to be taken in air or water

it may be either.

The final step to get the form of the differential equations in which they

can be solved is to introduce a streamfunction

(cf. Batchelor, '81

y P. 74).
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This function is defined by

(1) _dw
u -r
Yy 1T.18
(1) _ _dy
- d X

W-th the use of tnhe streamfunction the continuity equation is automatically

satisfied. ? is taken of the form
pixy,.ty = \P(y)elk(x'Ct) I1.19

Thus separation of variables is used, thereby introducing the eigenvalues
K and c. It will be seen that when this type of streamfunction is used in
. 4) . . (1) ik(x-ct)
! = e .
air and water the surface i is given by q QO
The wave-nature of the disturbance is clearly exhibited by the x- and t-

dependence of the surface. k can be interpreted as the wave-number and ¢ as

the phase velocity.

Tre physical problem throws light on the way to handle the mathematical
problem to find Ml - The physical problem is tao find what kind of waves
possibly grow due to the instability of the wind (see the introduction).

I suppose that the situation is fetch-unlimited (an open sea) and that the
wind suddenly rises; subsequently the waves grow. Minimal disturbances are

supposed to have been present before the wind rose.

Mathematically the fact that minimal waves are already present is translated
by supposing k or c to be given. As growth with time in a uniform sea is
considered k is taken to be given and real c will be determined for each

k and may be complex. It is the imaginary part of c that gives the growth:

N (1) =¥?09[KImC]t eik[x-Re clt I1.20

If the problem had been stationary in time and the growth-dependence on
fetch had been studied the role of k and c would have been switched (cf.

Drazin & Reid, '82 and Kawai, '79).

To find ¢ as a function of k it is necessary to find a streamfunction
satisfying the linearized Navier-Stokes equation and the boundary conditions.

Th2se equations can be expressed with ¥ as only first order quantity.
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Eliminating the pressure from the Navier-Stokes equations gives the Orr-

Sommerfeld equation:
d* 'l d" d’
-kl -bey)-d g ol -ale T vbg] 1

From the kinematical condition II.13 it follows that a possible solution for the

interface is given by

1) Yo ik(x-ct)
n = EET 11.22

The suffix o stands for evaluating the quantity at y = 0. U(g) may be
evaluated in air or water, thanks to II.B,\P[U] also thanks to II.23. The
four other conditions at the interface are (the kinematical conditior has been

used to determine q(1) but the continuity of the normal velocity remeins as

a condition):

ony =0 Yo = Yw IT.23
u éjfu__ ﬂl&w gbfw
dy Lpo‘*'(buo)d\, Y Y *((—Uo) Y
dtU, 42 d_\gw 4
ayt - =f 9 y* w
[f,:[(‘c‘_':'m *k‘)\ﬂ* ya] (c-u° N L‘)\pw" ?.T\,'\e- 11.24
e [, dUa g d v d‘tp]_ :
a;'[( dy (_—.U,B%"‘ (c-uo-r'l'»k\)o_)a%a * Tf ?;'ia = .25
LTI doo 9, &y, Tk,
= dy ~ :u,)qw + (,_-u°+‘5%)<9w\¢7% 4 YT pule-Uo)
I1.26
at infinite height the boundary conditions become:
- -
\'Pa[ ) = dy ',,, 0 11.27
and at infinite depth:
«00) = é—T -
¥ W= dywl_w 0 11.28

The complete set of equations governing waves as perturbations on sheer flows
is given by II.21-28. Due to the linearization of the equations the boundary
conditions are evaluated at y = 0, thus the essentials of a free surface do
not enter the problem. The problem can be solved using II.21, 23-28 with a
fixed boundary at y = 0. Afterwards with the help of II.22 the actual free

surface is found.



-']2_

Equations II1.21, 23-28 form a linear set. When the fourth-order di“ferential
equations in air and water have been solved there remain nine unknowns.
These are the eigenvalue ¢ and eight constants; the coefficients for the
four independent solutions for the streamfunction in air and water each.
There are eight boundary conditions: four at the interface and four at

infinity. Thus there remains one degree of freedom in the problem.

This situation can be compared to one in quantum mechanics; for instance,
wlth the one-dimensional case of a piecewise constant potential with one
potential step (cf. Merzbacher, '70). In the guantum mechanical case there
are two boundary conditions at infinity and two at the potential-step. There
are five unknowns: the eigenvalue for the energy and four constants; the
coefficients for the two independent solutions in both the regions left

and right of the potential-step (the Schrédinger equation is a linear
second-order partial differential equation). The energy can be solved and the
probability function can be known up to a constant. Usually normalization

of the probability function is used to remove this degree of freedom.

In the present case we are dealing with a fourth-order differential eqguation.
The essentials are the same, however. The form of the free surface and the
eigenvalue for the phase velocity can be found. The streamfunction can be
known up to a constant. This implies that only the amplitude of the wave
cannot be determined (cf. I1I.22, where Q is already solved in terms of

Y and c). Physically this is acceptable as one expects waves with small

and large amplitudes to behave the same. Mathematically it can be understood
by using J =X? instead of Y in equations II1.21-28, where A is some constant.
All the equations remain exactly the same. This implied that ¥ can only be
known up to a constant. If convenient, a normalization condition can be

added to remove this last degree of freedom, as in quantum mechanics.
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III. The basic flows.

In the derivation of the Orr-Sommerfeld equation the basic profiles play

an important role. These are the wind and the flow in the water when no waves

are present.

The interest in the water profile is recent and not much work has been done
on it yet. In the present study the flow in the water is considered nan-
turbulent and described by a profile measured by Kawai ('79). Tris orofile

is more or less an exponential one.

The wind speed as function of the height has always attracted much attention.
There is experimental evidence for a logarithmic increase of wind speed with
height, up to a height of * 10 m. In the layer very close to the watersurface,
which can be regarded as rigid in this context, the air speed increases
linearly with height. This layer is called the viscous sublayer and its

thickness is typically 0,5 mm.

This air-profile can also be understood theoretically*. I shall g2ive here an
argument due to Monin & Yaglom, '71. Turbulence is very important in
determining the profile. To describe the turbulence averaging over ensembles
is used. All quantities are described by their ensemble-average, incicated
by a bar over the symbol, and the deviation from the mean, indicated by a

prime. For instance:

The momentum flux will be seen to be important. To obtain this flux the
equation for conservation of momentum, II.2, is used, but in such a way

that turbulence is made explicit. The equation becomes:

ba; _é. _— - ,é_E 2 -
2t o, (u u ru/ul)=oy - 3% YuV oy
¢ ¢ * =703 2 IIT.1
i_:l,?.,%
x=1,2,3

* If the following argument would also be set up to obtain the profile

in water the assumption of the rigid surface breaks down.
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This is usually called the Reynolds equation. In the derivation the

following equality has been used (cf. II.1):

[« "4

W )
Ko %_;(q ('u;uq)

‘

U o

-4

The Reynolds equation differs from the Navier-Stokes equation by the

additional term

J 1
T :—eu,Uj

I
called the Reynolds stress.

In the situation at hand several assumptions can be made. The pressure
gradient is taken to be zero, the flow plane-parallel (in the x-direction)
and, when averaging over x and t has been performed, the flow is taken to
be stazionary. Then all quantities depend only on y, the height. The

Reynolds equations now take the form (i = x, the other two are identically

zerol:

1—
N d_l‘,.- - — u'v':=0
dy  dy I11.2

the notation is as in chapter II. Equation III.? states that the flux of

x-component of momentum in the vertical direction is constant. By calling
this flux 16:

du Y
T(Y)"'(’\’E;: - euV' =T, III.3

Exactly at the interface the Reynolds stress has to be zero, as the interface
us regarded as rigid. In a thin layer next to the interface the Reynolds stress
can be neglected, as it shall be much smaller then the ''iscous stress. This

layer now is called the viscous sublayer. The thickness is y,l =o«,v {i

where oty is some constant of the order of unity (ef. Monin & Yaglom, '71

s

P. 272). In this sublayer equation III.3 reads
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-
<1

l

eV =1, Y €Y,

A
~

from which follows directly (u must be zero at the interface, cf. II.4)

uly)= — y <y, IIT.4
o II1.5

u*a is introduced as a convenient measure for the wind speed, independent
of the scaling. The wind speed at the top of the viscous sublayer is

Xy U, o+ ITI.4 states that the flow increases linearly with height in the

viscous sublayer.

At heights far above the interface the Reynolds stress can be regarded as

much larger than the viscous stress (cf. Monin & Yaglom, '71, p. 272). Then

equation III.3 becomes
) -
-puY' = 1, Y ¥, 7Yy

This equation suggests thet the variation of the mean velocity can only
depend on - o' P and y; and certainly not on v . The mean velocity itself
should depend on ¥ as it is determined by the boundary conditions at y ,
the Tower boundary of the domain. At Yo the velocity is determined oy the
full equation III.3, so it is also dependent on V. To return to tha
velocity gradient, the only combinationﬁoﬁ T, Q and y that can be made

T —
which has the correct dimension is (?f) y + Thus (cf. III.5)

o

— = /\ E:i?
dy
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This determines the mean flow up to two constants:

Ct[y\= Au'a L\n\/ y 3 Y OV, 7Y,

II1.86

where B may depend on Y . Hereby the logarithmic profile has been made
plausible.

In the region between the viscous sublayer and the logarithmic layer the

velocity is usually chosen in such a way that the two existing profiles
are matched smoothly (

\

as an example, see Kawai '79 or figure 6).
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IV. Historical Review.

The two main concurring theories for wave growth are the Phillips®
resonance mechanism (see Phillips, '69) and the Miles' mechanism of
instability of shear flow. In this paper I work exclusively with the
method of instability of shear flow and in this review I shall also

confine myself to this mechanism.

This mechanism was introduced for the first time by Jeffreys in 1924,
but his theory was too incomplete to be able to agree with experiment.
In 1957 Miles tried again, with more success. His central assumption is
that at the interface of air and water the pressure induced by the wave
motion has a component in phase with the wave height and a component in
phase with the wave slope. This can be seen as a combination of the
Kelvin-Helmholtz' model, where wave height and pressure are in phase,

and the Jeffreys' model, where wave slope is in phase with pressure.

In 3V.1. I shall give much attention to the inviscid theory of Miles ('57).
I shall give a somewhat different version of the argument Miles used. The
alterations are due to Janssen (unpublished notes). My own research (see
chapter V) is set up along the same lines as the theory in §IV.1. In

§IV.2 the main points of Miles' viscid theory are brought together. In

§IV.3 recent numerical and experimental work on the viscous problem is

reviewed.
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§IV.1 Miles' inviscid theory.

In the air Miles assumes a basic sheared flow U directed in the

horizontal plane:

y > o0: U= Uly)
ud: =0

y is the vertical cofrdinate; the water surface is at y = 0 when in
equilibrium. In the water there is no motion unless waves are present.
Miles neglects viscosity and surface tension, which is justified as
his main attention is directed at gravity waves (A > 20 cm). This
leads to the following form of the Orr-Sommerfeld equation, zalled

the Rayleigh equation:
(U—(.hp"-[V‘(U-c)+u“]q,=° )

As before (chapter II) \Pis the height-dependent part of the stream-
function and the motion is periodical in time and the horizontal
direction. Without viscosity there remain only two boundary conditions
at the surface, consistent with the fact that the Rayleigh eguation is
of second order in the height derivatives. In addition the kinematical
boundary condition gives the form of the free surface I1I1.22 (see the
discussion at the end of chapter II):

n = S e\k(x-ct)

c-U,

A normalization condition is added to the boundary eguations; the stream-
function in air is taken to be unity at the interface. The remaining
boundary conditions plus the normalization eguation are:

contlnuity of normal velocity at the interface:

Yo = Pu or y:0

the dynamical condition:

%w[wu(u&‘%)*\PJC]=‘

the normalization:

[PW.*“PWC on Y:O

\?“:1 ovxx,:O
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the conditions at infinity:

|
o

Pa
Pu

y = 00

1
o

y=»- 00

For convenience a translated velocity in the air is introduced:
wly) = c - Uly) IV.1

and a dimensionless height variable:

- b

Then the complete set of equations governing the motion is:

W w" _ ' _d_
y>0: g - [y 5 ]g=0 = af Iv.2
y&o: y'-y, =0 V.3
y=e: P, =0 IV.4
y =0 : \'P°‘=1 LPW:‘I Iv.5
' ‘] LN, Y -
b[\%‘(‘ww":)"'l&.w]'
3 . . Lo
S (I W §= Pw V.5
y =-0: =0 Iv.7
For the streamfunction in water there is only one possibility
satisfying IV.3, 5 and 7:
\Pw = e‘ Iv.8

As was shown in chapter II the whole problem concerns the imaginary
pert of c (or w, as Uly) is real), which determines the growth. 7o
find this growth Janssen introduces the method of expansion of the
streamfunction in air and the phase velocity in powers of § . & is
the air density divided by the water density and is of the order of
one-thousands. Miles, though implicitly doing the same is very hazy
about this procedure. 5 is zero has to be understood as the air

molecules having velocities but no mass: and thus no momentum (all

velocities remain finite). Thus Janssen sets
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wlf) =W (f) + 8w

IvV.9
o)

o ) =g, 1)« S ()

In zeroth order the phase speed can be solved from IV.6 + 8 without knowing

the streamfunction in air (IV.1 has been used):
{ to) ]’l - _i
C % IV.10

The waves corresponding to this phase velocity are free waves and no growth
in time occurs. These free waves are slightly perturbed by the influence of

the air-momentum. The dynamical boundary condition in first order in 5 reads:

(o) (1) _ {0} (0] (o) (0)2
W = - W W W

-2y V.11

with the use of IV.5 and 8. It is important to note that, due to the norma-

- )
lization, the expansion of ?a at the interface becomesterlalt\fa[O’[O] =1

and for n # O Yg[n](o] = 0. IV.11 can be rewritten as

(o)
(1 _, (o) [ (o) ., W ]
W = 3w V% _ 1 ;TET_ V.12

The imaginary part of the phase speed in thus given by (cf. IV.1):

met™ -1 o0 g \fa(o)' V.13

U(D0} = 0 has been used.

. . . . (o] | (o) .
If the wind profile L is given w is known and Ya can be determined
by substituting IV.9 in IV.2. However, from the given expression for the
growth 1t 1s impossible to see in general what determines whether growth

'
will exist. An expression for Im Ta{O] was found by Miles which does make

this possible.

Before handling this I want to show that if Im Ya(O]' = 0 Miles' assumption
of the pressure being neither in phase with the wave height nor the wave
slope is justified. The weve induced pressure can be deduced from II.410

by substituting ¥ settirg V= 0 and integrating:
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Pa iklx-ct) C
Pa™ &k ¢ [W\P0+WLP°]

[\
[+ B
o

by using II.22 and IV.5 this becomes on the surface:

y =0 : p\a=% [L'Pa, +%']\Q V.14

This implies that \Pa' being complex renders the pressure being oLt of phase

with both the slope and the height of the wave.

Now to return to the question of exactly what determines whether growth exists.
First Miles assumed that the wind speed increases monotonically with height.
This mean there is one height, called the critical height, where w = 0. Then
Miles multiplied the zeroth order of IV.2. by ‘Pa[o]*

of \fa(O], and integrated:

» the complex conjugate

)

) > W(o)“ (o\q
PaZt el af = [0 3= 10y, af

(o) to)in

2> Y, (o)¢;°"lo) :-ofhp:hlis‘ [1 v ] l\,o:)l‘ olf V.15

The right-hand side of IV.15 can only have an imaginary part due to the
singularity of 510] at the critical height. To obtain this contribution
contour integration is used. At the critical height the integration path
is indented under the real axls to get the right sign for 0(1] (cf. Miles,

'57); see the picture below.

~--- = integration peth

AV = branch-line

Fig. 1. The integration path of IV.15.
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As the integrand is real everywhere on the real axis the only relevant part
of the integration path is the half-circle 0 round ic; the critical height.

In a neighborhood of f G \?a[O) can be expanded (Miles, '57):

(o)

o' t9 = G L1 STy 1 f ) (f-1.) + O(f-7,)]

By taking the branch-line of the logarithm in the upper half of the complex
plane (see picture abave) it does not cut the integration patch. The integra-

tion over D can be performed and vields (Miles, '57):

o)
te)!? to ( ¢
Im \.P(l\ (0) = ll-Po.‘(tc)' w (M IV.16

The sought for expression defining the growth can now be given, combining
IV.13 and 16:

2 w“ﬂn(fc)
Im 6(1] -1 C(OJTt I Lfa[O] (¥C]| :;“FTTf:S Iv.17

This is the famous Miles' result which says that the curvature of the wind

profile at the critical height determines whether energy-transfer to the

waves shall occur.
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§IV.2 Miles' viscid theory.

In '59 Miles generalized his theory by admitting viscous terms in his
équations. This means he had to use the full Orr-Sommerfeld eguation and
all four boundary conditions at the interface. Also he dropped the
assumption of no flow in the water, though he did assume that the water
flow was uniform. Thus the boundary conditions for the basic flows are
not satisfied (cf. II.8 ; next to the surface the wind profile is linear,

III.4). Miles restricted himself to cases where

ey

u 2

k*\: c < 10 V.18
('}

uya is given by III.5. In these cases Miles expects the viscous layer

above the water surface to be wi;hin the laminar sublayer of the undistur-
1

[V 1
bed flow. He comments that as,:ggz <<Ra2 the inner and outer viscous
(-9
sublayer will be well separated. The outer viscoLs sublayer is the layer
next to the surface where viscosity is important, the inner is tre same

near the critical height.

In the air Miles solves the differential equation without specifying the
basic profile. He finds two independent solutions for the streamfunctian
satisfying the boundary conditions at infinity. One is the inviscid solution
of his former paper. The other can be found by the method of length-scaling.
As scaling parameter Miles uses R%, where R is the Reynolds number in air.
He gives an expression determining the first derivative of the viscid

solution:

" i(U-¢)

TK —-———E—-7( =0 Iv.1g

For this solution X_he uses the WKB approximation as he cannot solve it

exactly. The solutions still contain the unknown phase speed.

In the water Miles solves the equations and finds two exact solutions. The
boundary conditions have to determine the phase speed and the coefficients
of the four solutions. As in his former paper Miles first solves for the
phase speed by assuming the density in air and the viscosity to vanish.

In this way a first approximation to the phase speed is found. This is

the same approximation as in the inviscid case: c,. = g—For gravity waves.

Using this first approximation he solves the coupled equations and finds
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a second approxiration e, * c, to c. 4 is small and given by:

-1 \ \Pg., ul \ ' u. e "’11.
¢, T, [-'ziRw +i6(TP; Yo )-1801- ‘:{‘ w)e' "R, ]+
W _oh o Susa
+ @(R:A,éRal RWA, ?‘:5‘ ) 5‘) V.20

Cw Cw

R, S Ra ® 30K

The imaginary part of c = c, * cy is approximately given by

' \Pm'(O) 3\)w q\)a 1/2
Ime - 3¢8Tm """"?t'(o) TuET - %cwé(z_&)

Miles interprets the first term as the positive energy transfer from the
snear flow to the wave motion, the second as viscous dissipation in water

and the third as viscous dissipation in air.
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§IV.3 Recent work on the viscous problem.

Valenzuela (1976) also worked on the viscid Orr-Sommerfeld equation to
obtain growth-rates but he included the shear flow in the water. He took
a linear-logarithmic profile in both air and water. Schematically it
looks like figure 2.

}
| Wind
1

; !
U ;

Air /
! ’
/.

Ug=U(0: < ___ Re(o)

-—\of\@q\{’/_v: -
rd
/
/
! Water

Figure 2. The basic profiles in air and water.

(figure from Valenzuela, '7§).

Valenzuela does not attempt an analytical solution: he uses the computer.

He finds growth-rates which are in reasonable agreement with the experimental
results from Larson & Wright (see Valenzuela, '76). He concludes that the
growth of gravity-capillary waves (A~1 cm) is due to instability of the
shear flows in air and water; and not to the Phillips resonance mechanism.

He finds that the shear in the water has considerable influence or the growth

rates.

Kawai ('79) made further improvements on the work of Valenzuela. He was
especially interested in the initial wavelets, the very first waves to
come into existence. He was able to decide between the Phillips’' resonce
mechanism and the mechanism of instability of shear flow for the initial
stage of the generation of waves in favour of the instability mechanism.
Valenzuela dealt not with the initial stage but with the subsequent stage
of development. Miles himself had taken the resonance mechanism as the one
responsible for the initial stage of the generation of waves (see Kawai,

'781.Kawai's evidence is numerical as well as experimental.

Kawai solved the viscid 8quations II1.21-28 numerically, same as Valenzuela.

The only differences were the relation between U, and Ur (the wind velocity
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at a representative height) and the profile they took for the flow in
water. Instead of Valenzuela's linear-logarithmic profile Kawai used the
one ne had measured himself, described by an analytical form by Kurishi

(see Kawai, '79). This describes more or less exponential damping.

Kawai's numerical results for the phase velocity show, as can be expected
from free-wave theory a minimum value (see figure 3). What is more interesting

he also finds, close toc this minimum, a maximum for the growth due to the
energy input from the wind (again, see figure 3).

35 T T T 7T T T T T T
(@ _ )
‘» Y /
E’, 30 - . 40/‘ g 30 - Cr
s ’ S M
02} 25—
d ke;
o1 \ 10~
- ‘ _? 'M
T \ K g ke;
“ \ - 4 LY
5 \\ & \‘\
ob \ 05 f- Y
|‘ .
[}
A
1
1
J U B N | 1) N N U S N G 1
0 1 2 3 4 S 6 0 1 2 3 4 5 6 7
k(cm™) k (cm™)
Figure 3.

The phase velocity and growth rate as a function of the

wavenumber for a) u s " 0.136 ms_’1

and U_ = 0.075 ms |,
_1 O
b) u = 0.214 ms and U
»a o

= 0.098 m5_1. Figure from
Kawai, '78.

Kawai's measurements show unexpected behavious the very first few secaonds
after the start of the wind. At first the water surface remains flat, then
there appear regular, long-crested wavelets all of the same wavelength. The

wavelength and growtn of these waves coincide with those of the waves with

the maximum growth rate from his numerical work. After another few seconds
the waves become irregular and short-crested.

Kawai noted an interesting theoretical feature:

in his calculations the
critical height is within the linear part of the wind profile.

This implies
that the curvature at the critical height vanishes and Miles'

theory would render
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the growth zero (cf. IV.17). Some calculations show that the critical

height is typically half-way up the viscous sublayer. Kawai does not

attempt an explanation of this apparent contradiction.
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V The phase velocity and the growth-rate.

Kawail (’79) mentioned thz existence of growth of wavelets while

the critical height was within the viscous sublayer (see §IV.3).

This is in contradiction with the Miles' theory, which predicts
grawth only when the curvature of the windprofile at the ecritical
height is nonzero. There are three possible explanations of this
feature. The first is that Miles' theory is wrong. The second is
that the flow in the water, which Miles neglected, causes the growth.
The =hird possibility is that the influence of the viscosity, which

Miles also neglected, is such that it causes the instability.

The “irst explanation might be possible but I do not consider it
likely. Miles', derivation of his result (Miles, '57, recapitulated

in 8§IV.1) locks sound, for the case without viscosity or flow in the water.

The second explanation is in general possible. The Miles' inviscid

theory about instability of shear flow in air would be Jjust the same

for a shear flow in water. The growth, which is proportional to the
density, would even be much larger. However, the existence of a

critical depth is necessary, which reguires the flow at the surface

being larger than the phase velocity (supposing the profile exhibits

a monotous decrease with depth). For the cases considered by Kawai

this condition is not fulfilled (cf. Kawai, '79). Typically, UD = 0,06 ms™"
and ¢ = 0,28 ms~ 1.

This leaves the third possibility. At first sight it seems unlikely that
viscosity causes instability, as it is associated with internal friction
which causes energy-loss. However, except dissipating energy viscosity
also diffuses momentum. This might have the effect of causing insta-
bility. Drazin & Reid ('81) point out that this indeed happens in

some cases, notably parallel shear flows.

To be able to check on the third explanation it is necessary to obtain
an analytical expression for the growth of gravity-capillary waves in
addition to the numerical wark done by Valenzuela and Kawai.

Miles ('59) solved for the growth from the inviscid equations but his
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interest was different.

He was looking at gravity waves and wanted tg show that one might

as well use the inviscid equations. Therefore he Jsed basic flows

in correspondence with the scale of his waves (A®20 cm ); a loga-

rithmic flow in the air and a uniform flow in water.

I have set out to find an expression for the generation of gravity-
capillary waves. The method of finding the growth, i.e. of solving
the Orr-Sommerfeld equations plus boundary conditions, is the sama
as in the inviscid case (see §IV.1)} The difference in mathematical

sense i1s that now a fourth-order equation has to be saolved.

In §V.1 the basic flows in air and water are chosen. In air a linear
prcfile is taken. This results in the linear wind profile model;
LWP-model for short. In §V.2 the streamfunction in water is solved.
Then in §V.3 general expressions for the phase velocity and growth

are found. They are general in the sense that they hold for any
windprofile. They are equivalent to IV.10 and 12; the general expres-
sions for the inviscid case. The streamfunction in air is derived

in the LWP-madel in §V.4. In §V.5 the growth and phase velocity in

the LWP-model are found. It is seen that even when the curvature

at the critical height vanishes growth of waves is possible. Viscosity

causes this instability.
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§V.1 The wind and the water flow.

In the main features of the basic flows in air and water I have
followed Kawai. This makes camparison of the numerical and analytizal

results possible.

The windprofile Kawai took is in agreement with the profile derived

in chapter III. In the viscous sublayer the profile is given by III.4.
As the thickness of the sublayer, yq, he took 5;%2.
To match the logarithmic profile at large heights with the linear
profile he used the following profile above the viscous sublayer

(cf. Kawai, '79)

Hya 1
: = 5u | _— -
YRy, U s s e U 22 (e -tanh o)
V.1
sinh o = 223 % eyl
a y y1

In Fis numerical calculetions Kawai noticedthat the profile influenced
the growth up to a height of %), A being the wavelength. This is some

20 times more than the thickness of the viscous sublayer. As an example,
take A = 1,5 cm and vy © 0,5 mm (cf. Kawai, '78). This implies that

the logarithmic part of the profile also influences the growth,

It is plausible however that the layers closest to the surface dominate
the transfers of energy and momentum, which would mean that the in-
fluence of the logarithmic profile is but 1little. Also the important
aspect of the wind profile is the linearity up to a height typically
twice the critical height. These two considerations led me to take a
linear profile in air all the way to infinity. The profile is given

by

= == U
Ve " ¥ T Y,

in agreement with III.4. The model describing the growth of gravity-
caplllary waves based on.this profile is to be called the linear

wind profile model. In §VI.3 I shall consider the validity of the
LWP-model.

In water I use instead of Kawai's profile an exponential one. This

fits his measurements well at the surface and reasonably well (deviation
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£ 15%) down to a depth of 3 mm. This is illustrated in figure 4.

The data in the figure were taken at different times but have been
normalized to the time of 12 s after the start of the wind. (cf.
Kawai, '78). Once an exponential fit is used the profile is determined
by the continuity conditions at the interface for the basic flows

(I1.8) and by the wind profile V.2

e 3 .
S .
S B . B
> - e
L
+ = -
o
Q
T

. -
Q
L
ey

6 At 4l 1 1 L1 11111 i
0,01 o,

the velocity of the water in ms~ ]

Fig. 4 The flow in the water as a funczion of depth.

The experimental data are from Kawai, '79.

= profile used by Kawai
—_— - = exponential profile governed by V.3 and /.4

—————— = uniform profile
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The profile determined by V.3 and 4 is used only for substitution

in the boundary conditions. As I could not solve the Orr-Sommerfeld
equation in water using this profile I used a uniform profile,

UW = UO (see fig. 4). A systematical error is introduced by using
different basic profiles for suostitution in the boundary conditioans

and for solving the streamfunction. The functional form of the stream-
function is but an approximation. Errors rise by using this approxi-
ma:ion together with the exponential profile. On the other hand errars
rice by not using the exponential profile in the boundary conditions.
Using the uniform profile makes it impossible to fulfill the con-

tinuity conditions for the basic flows (cf. II.8).

A Justification is that the flow in the water has much less influence
on the growth than the flow in the air. Also the using of the approxi-
mated profile has less effect on the Orr-Sommerfeld equation than
might be expected. I shall return to this in the next section.

In 8VI.1 the validity of the approximation of the uniform profile

will be considered.
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§V.2 The streamfunction in water.

To recapitulate the equations for the streamfunction

L) ¥ 119

w\P-(w+w']\P=iK\7w(\f—2tpn+‘f] '=d§

?[-oo]

Y(O]

\f'(-co] =0 V.5

1

Throughout this chapter

§= Ky V.8

will be used as a dimensionless height variable, negative in water.

The problem stated above is a fourth-order differential equation with
three boundary conditions given as yet. I shall choose the four inde-
pendent solutions in such a way that the boundary conditions at infinity

rule out two of them. Then the general solution can be written as

Yo =AY, T By, V.7

The third boundary condition defines a relation between A and B

1 = Aqﬁ[O] + B*E(O] V.8

The value of A (for the moment B is seen as a function of A) and the

eigenvalue ¢, hidden in w, will be determined in §V.3 where the other

boundary conditions are used.

Using the form of w to be deduced from IV.1, V.3 and B

%

w=c-Ue
0
makes the finding of an exact solution for the problem stated by V.5

very difficult, if not impossible. Therefore, as mentioned in the

foregoing section, w is approximated by a constant
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wmz W wo=c - U V.10

Thie is allowable wken (cf. V.5)

W" - W
L e e o 1
faor O}§ PR W,
V.11
-W
W= \ <1

Wo

as §= -3 coincides with vy =-%)\ . The conditions V.11 have not been made

too severe because the streamfunction has little influence on the growth
anyhow. To illustrate that these conditions are usually fulfilled
I shall give w and w'' as determined by V.9 at several depth for

one case. For the general case I refer to §VI.1.

i "
i v inmm w in m/s |w'' in m/s | W= \“..Iﬁ-—'—%
Wo Wo
0 0 0.22 0.06 0 0.3
-1 -3 0.26 0.02 0.2 0.3
-3 -8 0,28 0,003 0,3 0.3
i

Table 1. Comparison of w = c - erk_{s and Wo for KO=K= 360 m"/],
UO=O,DB m/s and c= 0.28 m/s

Using V.10 the first of equations V.5 can be written as
wo(\?-th=ikV[(\f-\P)‘(‘P'“f’ﬂ V.12

To find the two independent solutions ¥, and \{)_L (cf. V.7) satisfying

the baoundary conditions at infinity I define

X=Y¥'-Y V.13

Then V.12 becomes

W°X :'\\&V('X”-'X\) V.14
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One solution for 7(15

7(.55(3

This gives a solution to V.12 that also satisfies the inviscid

Rayleigh equation; to be called the inviscid solution

\p.=€f V.15

As the other solution For‘)( I choose

. (1-iR, )2
Ya=-iRe " V.16

Rw, the Reynolds number in water, is defined by
R = ~a. V.17

The check on 'Xzbeing the right choice (I might have taken

X = expl=(1- i RWA]) 15 that in this way T $ind = solution ¥, inde-
pendent of ¥, and satisfying the boundary conditions at infinity.
The general solution of V.13 can be found by the method of variation

of constants. This yields as a solution

wl(f)= efj T (es Y(s) ds dt

Substituting V.16 gives
(1-‘Rwyhf
. (f) = e
W1 will be called the viscid solution.

The streamfunction is a linear combination of the viscid and the
inviscid solution. The proportionality constants are defined by

V.B8; the normalization at the interface. The streamfunction can be

written as

v, ()= A [ e“_iR‘"yhi - Aef]
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§V.3 General expressions for the phase velocity and the growth-rate.

Now the streamfunction in water is known and the phase velocity can

be approximately solved. Approximately, as an expansion of the con-
tinuity equations at the interface in 6 [eair divided by Ehaterj

is made (as in §IV.1).

The phase velocity can be found by solving the zeroth order equations;
thus the streamfunction and flow in the air have no influence. To
obtain the growth-rate a first order expansion in $ is necessary.

This implies that the growth-rate does depend on the flow in the air
(as is to be expected; the wind causes the growth). In this section

the airflow will not be made explicit. In this way a general expression

is obtained governing the growth.

The continuity conditions at the interface are given by II.23 - 28,

They are here restated with f = ky as height variable, supplemented

by the normalization condition.

y=o: @, = 1
g = 1
TWala t Ve P T WY, t Wo
53 Ly vy +wo) +was ] = gy (one? o) + v,
O Lgu lowgwa - B ) v gl vy, (392 - 92 )] =
g o go b 3 ) - T

The wave-dependent quantities are expanded in powers of é . The ktasic
flows are not expanded as they have nothing to do with the proportionality

of e“ and ew. The expansion read

f)
=)+ () + ...

Substituting V.21 in V.20 gives the normalization and continuity equations

) [
w, =wi°(f) * Swy + .. 120 or Wy, 21
TR

in powers of 5 . I shall only need them in zeroth and first order.
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Normalization and continuity of normal velocity

zeroth order:

(o)

9

(o) V.22
Yo =1

first order:
\

3]
Yo =0
L]ou) V.23
w

Conditiors V.22 and 23 will already be used in the following

W
@)

expansions.

Continuity of tangential velccity:

zeroth order:
(o) (6} to)! o)t (o) Lot
“Wa v W, Yo =W, r W, g,

V.24
first order:
(e} 1) Wy o) () O RN
Wo \Fa. + W, Lpa = W, wa + W, wa V.25
Continuity of shearing stress:
zeroth order:
(o)t + w(u) (o) o)W o
- W, + W =
w ° o ‘fw V.26
first order:
\)Q (OL o\ (0) (v n (8} (1 (v (o) (VI _
V;L""(o. tWo W, \Pa ]—wo + W, wa W, \rw V.27
Continuity of normal stress:
zeroth order:
01 (o) to) ol ld_L o)t NV“) i _'Ik -
Vo fu e W, v, kd, (3 % T e, 70 vz
first order:
te) () oy (2 ) (o o oy to) it
2\”/0 Yo \f}w *We P W Wo tW, ‘k\)w (34’;« Y, )+
to) (O)) tiym tey2 (o) () (o)
twy iRk 3y, -9 ") = Wo Yo -Wp W, +
+w|e) . \( ( oyt TSUL _@_
o Vak 3y, -y, ) - % V.29
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As qMIiS known up to a constant (V.19)
. (1- iR )" Act]
\Pw: 1-A [ e . e

The expansions of the derivatives of Yw at the interface can be made

explicit (the expansion of Yu itself is given by V.22 and 23)

. B 1e)
é:n o) _ (- ‘QN) - A V.30
dg \‘fw (O) - -, _Alo)
" o . o
T I Lot SO
di"‘ LPW (O) = 1-A(°‘ ). zw(:u\(1 _ ?'_;“:“) + A 1 —Alo\ }

A formal expansion of A has been introduced, the expansions of ¢ and

RW follow directly from their definitions and V.21.

When no confusion is possible the suffix indicating the evaluation

of a quantity in zeroth order will be dropped.

Now the formalism has been developed far enough to enable the phase
velocity in zeroth order to be solved. 0Of the five zeroth order eguations
at the interface qw=1 has been used already and here only V.26 and 28,
continiyity of shearing and nqrmal stress, have to be used. ?a=1 and
cortinuity of tangential velocity are necessary to determine L{a(f)

anc thz growth, but not to determine c. They will be used ir §V.4 and
§V.5.

(o) () (0} { . .
The unknowns are A and w ), or A and c *) as UD 1s considered as

kncwn. V.26 gives a relation between them, when V.30 is substituted:

°) {0}
oyt :BLI“_:’A—- V.32
- W, +wé°’(1 + 1-A® ) =0 .

V.8 gives w and its derivatives at the interface

W, = (-Uo
a ko \"
ny 1 df” w°=—Uo('LZ) V.33
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Substituting this gives

o) Wo
A( =1-3RW(QWO+U°(T‘Y> v.33

V.28 gives another relation between A and w, aftesr substituting

V.30 and 32. It reads:

fa,
1-iR, ) - A k, 3(1-R, )% (1-3R,,) nA
:( 1—)A F WU 1+ iy k W1—A
V.34
) % _ Tk -0

To simplify the last equation I expand it in powers of the square
root of the Reynolds number, sz. Then I truncate the series.

Throughout the following equality is used

-2

e R =R TR) TR v

These expansions and V;33 are substituted in V.34 and the equation is

“plw

Al
n-2

multiplied by 1-A. This yields

2 2 Pwg R ‘Tk ) e R 2+
wo {j("‘Rw) -1+ 2w, +U E !] * (Dw ').w-rU lf)
UO{QIWR Q'WQRW’L]
*W[1w°+u(b)1+|0 L( -‘ +1W°+U°(‘T:‘°)) =
0 + J(R.™) V.38
wO

Using the de%inition RW = Ik gives the final result for the phase
w
velocity

¢ = U, - !%—t— -2y, k o+ V.37

2 . -3
SR G -8 IR ST SN L T

Equetion V.37 gives the phase velocity in zeroth order as a function of
known guantities. When UO is small compared to ( 2 YA the
last term dominates the expression. In this case the phase velocity

is near the free wave velocity. The viscosity gives rise to two
imaginary terms. The term -viwk represents damping of the wave.

The term within the square root represents growth or damping, depending

on k. A further discussion of V.37 will be given in chapter VI.
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The next step is to obtain an expression for the growth-rate.

The growth-rate is given by the imaginary part of Ske (see 11.20).
This implies c"™ has to be solved, and thus the procedure will be
exactly the same as when dealing with the phase velocity, except that
now first order equations are used. Again I start with the continuity

of shearing stress, V.27, combined with V.30 and 31

)
. ‘.R

v wy - o R +2-1AJ W, C m iRy
-iwo(hupu)-c [ w1_A—_ v {.WWP—OU'T‘EW) +A 3 ]

UUsing the expression for A V.33 the following can be obtained

1 -'.Rw 2
A oy L Gy v (ot (38)) ] -8

The equation is exact and no expansion in powers of RW. From the equation

for continuity of normal stress another relation between Am and c

)

can be found, and thus c can be solved. This does demand a lct of

computations though. The start is to substitute V.30 and 31 in V.29
1-A
We

and multiply the equation by

Wo

" OU-A) | (Pivk y
20 (1R -A] + sl EURLS

o\ : ¢t () (1-1R)"- 1
R R R B e e A

-—SC“) BC“) _Ai:‘ . Sh . ‘h -
+ ile\ [ zwo('_%w) + ';wo(i"?ﬁw\ + 1-A <-(1‘\Rw) *3(1-‘Rw) -l)] -

=M - S e 0emUy ik (3, - 0]

1

This equation is expanded in powers of sz and the relation between A‘"

and 0(1), V.38, is used together with the definition of Rw' The

1
2quation will be truncated after fewer orders of R 2 than in the former

case as that was a zeroth order equation in 6 and this one is first

) ] ]
order. The orders of Ua, ?a , Wa

terms will be kept, though the factors multiplying them will be truncated.

w
and ?a are not known co trese

[t is very important to keep the derivatives of the streamfunction in
the air as they, if anything, will cause the growth. After some com-

putations the equation becomes surprisingly simple
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ke
aw, + U, % W,

", . ~
°('Rwawo*u(M"‘RW2w +U<&f[.ua

tik(3y) - .».)] 2wa+vle (': ( "Rw)%) *

hc'iRw v Ry, 9 0
' 7""'0*“0('\2’)1 - k(2we + U, (2 )) * G(Rw)

In air I also define a Reynolds number :

Wo
\)o.k V.39

Rao ©

(1)

The expression for c then reads

1 , 3 Wo
= [‘Po""o r U, - kw°]2w°+u°%

: Wo ) ‘ ) i .
R T L300 O eRTY) g )  O(RY)

All quantities are to be evaluated at y = o

V.40

The growth rate /3 for the amplitude of the wave is obtained by adding
the imaginary parts of V.37 and 5 times V.40 and multiplying by k;

approximately this becomes

3% 'h
pz im0 () e 1)

k 8“’0 2 ) n n-
W, +UJ [Im% RM ’R"-(:“?o“?u ))

V.41

The real part of V.40 gives a correction on the phase velocity
(see 8VI.4), but now there are additional terms due to viscosity
proportional to Rao or even larger.These terms can have a significant

contribution to the growth rate, as can be seen in V.41.
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§V.4 The streamfunction in air.

The streamfunction in air is solved for the special case of the
linear wind profile model. This profile was discussed in §V.1.

Let V be given by

3

V = Mwo V.42
AL

then lJQ = V’§ +\J° . The Orr-Sommerfeld equation plus three of the

boundary conditions in the LWP-model read ( g = ky as variable)

(c-Up-VE)(y"-yp) = "Wa[(up“-tp)" - (4" -9))

\p[O)=1

To simplify the differential equation I introduce several new quantities.

First the height codrdinate is translated
Q"QO = i
\
QO:" Y (c-Uo)

Thz translation is such that N=1ds at the surface andv1=C)is at the

critical height. Then another Reynolds number is introduced

U*Q
- 3 V.45
Ra= 55

Typically, U*u= OJH m/s and, for gravity-capillary waves, W, = 0.22 m/s

(see 8VI.1). Thus Ra and R

W,
a0 - ;Ji are of the same order. Finally I
o

define

28\
£=(1Ro.)3 Plﬂ e=-% V.48
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In terms of X= Lf"-LP (as introduced in V.13) and with the
substitution of the newly defined quantities the Orr-Sommerfeld equation

reads

nX =2 (" - ) V.47

An analogue of the inviscid solution that was found in water satif:ies

V.47

~y = O

-1
- V.48
= \P1 =

This solution will again be indicated as the inviscid solution.

More solutions of V.47 are given by (cf. Drazin & Reid, '82)
Y ()= A (G +et)

The functions An(Z§ are the generalized Airy functions. They are given

by (Drazin & Reid, '82)

s n2r

A(2)=e > Ailze > ) n=172,73

The viscid solution Qz is obtained using the relation X~= ?)n-kf.
g3
If ”x1=-Av( ¢ *‘Ei) is chosen the boundary conditions at infinity

are satisfied. The viscid solution then is
00
P, () = fmn\n(q-q') Ai(S +er)dn V.49
n

g:"g V.30

The streamfunction in air is a linear combination of the viscid and the

inviscid solutions. Using the normalization at the interface it can be

written as

- 1—o<e_q°
\,h = oe + %(YM kpl(q) V.51

The streamfunction in the LWP-model is given explizitly by V.51.



-44_

Thew rises a difficulty however when one wants to substitute Vb
in the general expression for the growth, V.41, The values of ?1(00)
and its derivatives will have to be approximated. As a first,

rough approximation I take

n,= O + O(Ra)

and use the follwing expansion of V.49 for n= O (Reid, '74)

o

“(q‘)Ai(<'*£1)dq‘= e t(0)] Ailz)de + {0 A'(0) +O(¢?) V.52

00

The viscid solution at the interface becomes in this way

¥ ln) == €AY + O(R) V.53

Tne derivatives of Y, also have to be approximated.

Differentiating V.49 gives

9o ()= [ cosh (q-) AV (G« €%) diy
1

Using the same approximations as for 9, it follows that at the

° ¥
interface ( I AG(T) dz = - 3 ) Abramowitz & Stegun,
oo
'65 p 478)

) <1

\P{(qo)=-3g+O(Ra) V.54
The second derivative is best obtained from the relation

»
K= VYo -\,

" ) 2

$2 () = A (G v &)+ gy, ()

Approximately this becomes at the interface

A}

¥, (n,) = - Aifo) + O(R;h) V.55
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From the second derivative the third is obtained.

At the interface it is given by

Ai*(0)

Y2 (no)=- "% + O(Ry) v

Tre effect that the approximations,made inside the LWP-model
fcr the streamfuncticon and its derivatives at the interface,have

on the growth-rate will be considered in §VI.2.

56
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§V.5 The graowth-rate in tre linear wind profile model.

In the foregoing section the streamfunction in air has been solved
for a linear wind profile. The linear wind profile approximates the
true profile for gravity-capillary waves, as was shown in §Vv.1.
Combining this profile with the general results of §V.3 gives a
theoretical explanation for the experimental results by Kawai

concerning the growth of gravity-capillary waves.

The phase velocity in zeroth order as described by V.37 is not dependent
on the airflow. No new contributions are to be made here to this de-
scription The expressions for the first order corrections in § to ¢
anc for the growth-rate (V.40 and 41) do contain derivatives of the
streamfunction in air. These derivativas will be calculated for the

LWP-model in the following paragraphs.

The streamfunction in air is given by V,51

-Ylo
-n |- oe

Yaln) = we™ + =270y 4. )

I snall take the zeroth order expansion of this expression by sub-

. . (o) {ov)
stituting o for o and N, for v,
The suffixes W\will be dropped. Of the five zeroth order normalization
plus continuity conditions at the interface one has not been used yet,
notably the continuity of tangential velocity (V.24). This equation

is now used to calculate o . Besides V.24 I use V.2, 30, 42, and

517. This gives

2
' (1-R) - A
Voo e ) g L

n
In this expression as in the follwing q: stands for y, (n,).
-1
The expression can be approximated by setting Ne 0 *(j(Ru ) (see §8V.4)
. Wo o . .
and A:-iR, WU (Bt O(Ry) (cf. Vv.33). Then « is given by

o 2k Y -1 Yo 1
o = — +O(«RQ,(HTP;) R,™)
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Using the approximations for q& and qﬁ V.53 and 54 this becomes

g 2l O(R;") V.57

W €

It will turn out best not to substitute Qz(qg; the order of magnitude
of \p,(n,) has been used though.

It may be noticed that the calculations are much less exact in this
section than they were in §V.3, describing the general growth. This is
partly form necessity and partly because in general it is not known
which terms are important, while in this model it is possible to see

which terms dominate the equations.

i)

) ' n
Now o 1is known and Wa‘ i{é and ?Q_ can be determined. To keep the

errors small I calculate ?; directly from V.24; this gives

\ 0 ‘
%o - W o+ UI(Ry) V.58

»

Y, and W;& follow with the use of V.51 and of the approximations
W »
for ¢, and Y- V.55 and 56.

W g IR G- )

Ail
> \PJ’=‘3'Y““O’) + O(R")

W, €
and

w
"

f - g e (RS (- By

2

Using the fact that Ai‘(O) is negative (Abramowitz & Stegun, 'B5, p 448)

and V.56 this becomes

AV A 5
\fa = = wQ{L + O(RQ3>

V.60
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» \l i
These expressions for Yo ,q; and q; are substituted into the

first order correction to c V.40

Wy . 3wV A0
(—)_w°+U°—-§)g.‘ Rno

O(R) V.61

In the LWP-model the growth ﬂ of the aplitude of a wave can be approxi-
mated by substituting V.61 in V.41. It has to be kept in mind that this
is but a crude estimate of the growth. This is not due to limitations
of the LWP-model but to the rough approximations made for the values

of the streamfunction and its derivatives at the interface. This

subject will be futhzar treated in §VI.2.

Witn the use of V.81, Pk 6'1 = é T (cf. V.48) and an approximation

to the imaginary part of V.37 the growth becomes

kW Uk, (2- %)

/_z, = -Q\JW),(" N VTS V.62
P
i’ *a Rv}

2 (2w + doe)

It will be shown in the calculations in the next section that for certain
wavenumbers V.62 describes positive growth. Looking again at the general
expression it is seen that the growth is caused by a term proportiocnal
to Owandly aterm proporzional to oa‘?;" This makes it plausible that

viscosity itself is =he cause of the instability.
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VI. Discussion.

In chapter V the phase velocity and the growth-rate have been

determined subject to certain assumptions. In this chapter the valies
for these guantities calculated in this way will be compared to
numerical values by Kawai ( $VI.1 and §VI.2). TIn these sections the
range of validity of the analytical expressions is also derived.

Next the expression for the growth derived in this study will be
compared with the expression Miles derived in his viscid theory (§VI.3).
In 8VI.4 the limit will be taken to very large Reynolds numbers, which
makes comparison with Miles' inviscid theory possible.

In 8VI.5 attention will be paid to the possibility of growth while

the density in the air is zero. Finally in §VI.6 a new aspect of the
theory will be introduced. The conservation of energy will be considered
and described mathematically. This will lead to an answer to the question:
"Which contributes most to the energy transfer from wind to waves; the

normal pressure or the shearing stress ?"
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§VI.1 The phase velocity.

Eguation V.37 is an expression for the phase velocity.
This expression has been derived subject to the assumption that in
the Orr-Sommerfeld equation a constant waterflow could be used (see
§V.21. Actually V.37 gives only the zercth order expansion of the
phase velocity; the real part of V.61 geives a first order correction
in & to it. However, as this correction is 1% or less of the zeroth
order expansion it can be dropped. This implies that the approximation
of the wind profile has no influence on the values of the phase velocity.
To be able to compute phase velocities from V.37 UO and ko have to
be known. The prodigtqyok is a function of the friction velocity (V.4)
- OVUyg

Uk, = 2
Also there is a value for UD corresponding to each wind speed. This was
showri experimentally by Kawai, '79. I use his relation between Up and
u,_. These two relations determine UD and KO as a function of u '. as

*3 %3
can te seen in table 2.

U*a in m/s UD in m/s Ko in m/s
0.136 0.075 250
0.170 0.096 300
0.214 0.098 470
0.248 0.102 600

I

table 2. U and k_ as a function of U .
0 o) *#a

Based on V.4 and measurements by Kawai, '79.

In fig. 5 the phase valocity is shown as calculated from V.37 and
table 2. For comparison the values for the phase velocity obtained
numerically by Kawai, '79 are also shown in fig. 5. As discussed in
§V.1 I have used the same basic flows as Kawai. Only I was forced to
make approximations to be able to solve the equations analytically.
Kawal used the exact flows. This makes a check on the validity of the

anylytical expressions derived in the present study possible.
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5. The phase velocity and the growth rate as a function of
the wavenumber for several wind speeds.
al u = 0.136 m/s
¥a
b) u = 0.170 m/s
*a
c) u = 0.214 m/s
*a

d) u = 0.248 m/s
*a

O0——o0 = the phase velocity as found by Kawai, '79.
¥+ = the phase velocity as given by V.37 and table 2.
e— ——o = the growth-rate as found by Kawai, '79.

BH—=-—A= the growth-rate as given by V.62.
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It is seen in fig. 5 that for all wind speeds considered the ana-
lytical values for the phase velocity agree with the numerical
values. For the smaller wavenumbers a deviation is shown; for the

larger wavenumbers the agreement is very good.

The deviation at the smaller wavenumbers can be understood by
looking at the range of validity of V.37. V.37 is valid only when
the approximation of the uniform profile in water is justified.

Necessary conditions for this approximation are (cf. V.11)

11}
o+ W -Wo] <
for =3 ¢ S <0 Wo <1
- W VI.1
Wore | ¢ 9
Wo
where w is given by V.9
hog
- ® -
w=c¢c-U @ w =r¢-U
o 0 )
The second condition of VI.1 is fulfilled only if
U, < ic VI.2
as
lW"wo £ l UO
-~
V k.g ‘WD C‘UO

The first expression of VI.1 is, for small wavenumbers,

largest for §= 0. Then:

2
Iw+w"-wo - (%) U
§=0¢ W, c-U, VI.3

Combining VI.1,2,3 and V.4 gives the minimum wavenumber for equation
V.37 to be valid: -
) § Uyg
l(m'n-\ = max ( 2¢, Vw(uo((.-uo\)vl ) VI.4

These minimum values are given in table 3 for the values of the

friction velocity used in fig. 5.
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u.'a in m/s 0.136 0.170 0.214 0.248

K . inm 150 210 350 4€0

table 3. The minimum wavenumber for V.37 to be valid, as given

by VI.4, for several wind speeds.

It is seen that for each wind speed the analytical values for
the phase velocity agree well with the numerical values within
the estimated range of validity of equation V.37.

It may further be noted that when U0 = 0 the range of validity

is infinite.
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EVI.2 The growth-rate.

Equation V.41 gives a general expression for the growth-rate,

valid for any wind profile. In the case of a linear wind profile

this equation can be approximated by V.62. To compute actual values
from V.62 wo, UO and Ko have to be known.

MD stands for the zeroth order expansion of wO = Cc - UO and is given
ty v.37. UO and kD are given in tablz 2 for several friction-velocities.
In fig. 5 the growth-rates are plottad as a function of the wave-
number for several wind speeds.

The numerical values abtained by Kawai (see §VI.1) are shown in the
same figure. The wavenumber of the maximum of the curve Kawai computed
coincides with the wavenumber of thne first waves that are

generated in experimental situations (see §IV.3).

The most important conclusion to be drawn from fig. 5 is that positive
growth-rates are found. This is in contrast with Miles’ inviscid theory
bit in agreement with numerical calculations. This testifies to the

hypothesis that viscosity is essential for the growth of gravity-capillary

waves.

The growth-rates in the LWP-model are of the same order of magnitude
as the numerical growth-rates. In all four cases considered in fig. 5
there even is good agreement between LWP- and numerical values for

Reynolds numbers close to 23. These characteristics can be understood

by a consideration of the range of validity of eq. V.B2.

V.62 is a special case of V.41, To obtain V.41 the approximation of
the uniform profile in water was made, this was discussed in §VI.1.

The theoretical estimate of the rangs of validity of this approximation
du
is kK3 k., 3 K . =max ( ig, ——wa ) (VI.4).
min min vy [Ug (c-U, ]Vz
V.41 is thus valid far k > Kmin and this implies that V.62 can only
be valid for k ).Kmin. But to obtain V.62 from V.41 the LWP-model

wes used. This makes a further restriction on the range of validity
of V.B2.
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1‘81._ B e o S O

b8 1.0 12

—s U in m/s

fig. B The exact profile and the linear wind profile.

= exact profile, ——— = LWP, M= the amplitude of

the wave, yC = the critical height, fa k = one tenth of the

wavelength [qo, Y, and A for a typical wave (Kawai, '79)),
@

= 5—,

y,l = the thickness of the viscous sublayer, here y,I = 5°
4
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To ostain this range o~ validity first the height where the exact
profile (V.1 and 2} and the linear profile (V.2) start to deviate
considerably is estimated; see fig. 6. This height of course depends
on V., the thickngzs 0~ the viscous sublayer. In this estimation I
shall use y1 =5 o as Kawai's calculations, drawn in fig. 5, are

¥ v
based on this value for Yy It is seen in fig. 6 that for v £ 8 -2

Uk g
( v£0.88 mm in fig. B6) the deviation of the two profiles is less

than 10%.

L5} 11
The next step is to notice that YZ’ the viscous part of ?a , determines
the growth in the LWP-model (see V.60 ard the remark at the end of

\
8V.5). WZ is given by (cf. V. 55):

i A"'(§+E1) > 1 iry t
o) () =- T e +YlfCosM(r(-q')Ai(§+E)dQ -

Thus its characteristics are determined by the Airy-function. For real
arguments the Airy function as well as its derivative decrease rapidly
and monotonously and when this argument equals three their values are

less than 3% of their values at zero, see fig. 7.

L i i R Mt St ¢ \J T e A
|
|
Y 1
|
1
IR J
'\
\ ;
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\
l1 - .\ ]
N\ ‘
\.\‘ {
S T LT T W U S S5 VR TR J
2 y 6 'Y 10
—_— %

tig. 7. The Airy-function {figure from Abramowitz & Stegun, 'B5).

—=s= = AL (XD, e = ALY (x).
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I assume that the Airy-function dominates the behaviour of the
integrand (which is true at infinity) and I skip the fact that the
1

argunents in VI.5 have a phase of © T instead of being real.

Then it follows, the arguments being more or less £ , that for
1 VI.6
€l >3 )

it does not matter much whether you take the exact profile or the
linear one. In other words, 1 assume the profile for i%l>’3 to have
little influence on the streamfunction for \%I & 3 and 1 assume
that the streamfunction for i%l 2 3 hardly contributes to the total
value of the integral in VI.5. The value of 3 is somewhat arbitrary,

it might as well have been 2% or 33,

This suggests that as the boundary of the domain of validity for the
LWP-model that wavenumber is taken for which the height n- 3lel coin-
cides with vy = g%i , the height where the LWP and the exact profile
start to deviate substantially. If this definition is accepted it
follows that the minimum wavenumber is | q== Ky +Cj(R;1], and use V.45

and 46):

Uga
k. = e
mintWwP 13%a

This can be rewritten in terms of the Reynolds number

Qamax = 19 VI.7
It can be seen however that this maximum value for Ra is very sensitive
tc the choice of the height where the Airy-function is taken to vanish
and to the choice of the height where the LWP and the exact profile are
said to deviate substantially. Therefore I shall formulate VI.7 less
strict and state, somewhat arbitrarily, that the condition for the

LWP-model o be valid is, depending on the accuracy demanded,

Ro& 15 - 25 Vi.8
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There is however another condition for V.62 to make sense.
First the LWP-model must be valid, but second l€} must be small.
This latter condition results from the fact that V.62 is an expansion

-2/
in lel= R . This leads to the condition

Pl
\%

20 VI.S

Thus the conditeons for the validity of V.82 are given by VI.8 and 8
(and VI.4 actually, but I suppose VI.4 to be automatically fulfilled
when VI.8 and 9 are fulfilled). It is seen that a range of validity

of V.62 exists only if the accuracy demanded is not too large. Then

this range is given by

20 £ Ra £ 25 VI.10
In table 4 this range is shown for several wind speeds. By looking at
this table and fig.5 it is seen that in the estimated range of validity
of V.B2 the analyticael results coincide well with the numerical results
obtained by Kawai. It mav be noted that in the estimation of this range of
validity y1 = 5522 is used, in accordance with the choice made by

Kawai. If the thickness of the viscous sublayer is taken to be more

the range of validity of V.62 increases.

Uea in m/s Kmin in m_1 Kmax in m—1
0.136 360 450
0.170 450 570
0.214 570 700
0.248 660 830

table 4. The range of validity of V.62 as determined by VI.10.
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§VI.3 Two viscid models.

Miles in his viscid theory dealt with the same equations as handlec

in this paper though he dealt with a different situation. His interest
lay with gravity waves; in this paper gravity-capillary waves are
considered. Miles also found a first order correction in & on the
phase speed, though it is defined in a different formalism from the
one used in the present study.

Translated Miles' result reads (Miles, '59; I have made minor

approximations in the translation)

H L
M, ) Yoo, I Ua’ .2 i -1 Uga -1 -
(o} = 3 (\P,IWD + Ua] 2WO (1 ‘P/i WO ) e_ Ra + G[‘Gg- , Ra RW ) VI.11

WH is the inviscid solution of §V.5.
(1)

The expression derived in §V.4 for c is
1
(1) ! ! g
S 2+ UK ) ?awo ’ Ua Kw ¥
00 o}
w Kk
o
W
TEEUR) R sy et -y '
Z + 3 ' - - -2
( o o0 a %g ' Ya ?a + CﬁR 1. Y" R ?) VI.12
W a W
wDK

These two expressions are distimctly different. The viscous solutiorn in
air does not enter Miles' expression, while in the LWP-madel this was the

term dominating the growth.

Miles restricts himself to cases where (roughly)

5, €10

Uga? VI.13
S = N
a N ac

This cannot be the cause of the differences however as some of the cases
described by VI.12 lie close to this region : for Upg = 0.136 m/s,
k =380m " and c = 0,28 m/s 5_® 12.
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Miles supposed though that when VI.13 was fulfilled automatically

1

Sa << Raz VI.14

wculd hold (Miles, '5€). This implies that the inner and outer viscous
stblayer are well separated (cf. §IV.2 and Miles, '53).

VI.14 does hold as a consequence of VI.13 in the situations Miles
ccnsidered. Fot the gravity-capillary waves described in the present
study VI.14 does not hold. For instance, in the situation described
atove Ra%£’7. Indeed, the inner and outer viscous sublayers are clearly
nct separated as I use as approximation the critical height 1lying on

tre surface;q o = 0. The fact that for waves considered by Miles VI.14
dces hold while for tre waves in this study it does not hold might be

the cause of the difference in the two expressions governing the wave

growth.
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§VI.4 The inviscid case as a limiting situation.

When the limits

R <> oo T <0
w

R —» oo U —» ©
a 0

are taken the results from the viscid theory ought to be in agreement
with the inviscid theory. I shall go into two different aspects of
this limit. One is the shift of the phase velocity of free waves due
to the density of the air. The other aspect is the growth of gravity

waves due to the wind.

When neither in water nor in air a basic flow i1s present the stream-

functions are in the above-mentioned 1limit given by

- {

= = I.1
9a = @ u = € e

These streamfunctions can be obtained by directly solving the Rayleigh
equations (see §IV.1) for Ua[y] = Uw(y] = 0. The zeroth order phase

velocity, describing now free gravity waves, becomes (the limit of V.37):

VI.16

This is in agreement with free wave theory. The shift c(q} is now due

solely to the density of the air as the flows have vanished.

It becomes (the limit of V.40; VI.16 has been used)

M )
L0 %C(OJ[% _ 1}

Using VI.15 this becomes

C[i) - _c(o]
This is in perfect agreement with Whitham, '74, p 445. The negative sign
of the shift can be understood as the density of the air having the effect
of a renormalization of the gravity force. Apparently the gravity be-
comes less when the air is present. This implies, with the use of VI.16,

that the phase velocity becomes less.
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When an airflow is present ?a cannot be solved, but I suppose

the derivatives of ?a remain finite in the limit, in agreement

with what is usually seen. Then Miles' result for the shift of the
phase velocity, given by IV.12, is obtained exactly by taking the
limZt of the viscid expression V.40. Tte imaginary part of this shift

determines the growth.

In the LWP-model the limit can also be taken. Some trouble arises

as the shear in the airprofile is proportional to the Reynolds number.
This implies that the shear at the interface becomes infinite and this
renders the growth infinite (cf. V.62). If, to make comparison possible,
the shear is taken independent of Ra the growth becomes zero in the
inviscid limit (?é‘ and %; as well as ?;) are proportional to V).

Thie is in agreement with the Miles' theory, which says there can be

no growth when the curvature of the windprofile at the critical height

is zero.

This makes it clear that the simple relation between curvature at the
critical height and growth is valid only for certain waves, that is,
valid only when viscosity and the viscous sublayer can be neglected.
This is why Kawai's measurements are not in disagreement with the
Miles' theory, though at first sight they were (see the discussion

at the beginning of chapter V).

This leads to an attempt to make the boundary of the region of validity
of tnhe inviscid theory from Miles more distinct. I propose as necessary
conditions for the inviscid theory

1) the critical height must lie above the viscous sublayer.

2) the Revnolds number in air 3ER must be 1000 or more.

a

To determine a maximum wavenumber from 1) I suppose that I am dealing
with gravity waves and that the flow in the water can be neglected.
Then the phase velocity is (VI.18) %k - The air speed at the top of
the viscous sublayer is (cf. chapter III; for oy I have chosen 5 in

agreement with Kawai, ?79)
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This equals the phase velocity when

g

25 U

k = 2 VI.17

The maximum wavenumber for the validity of the inviscid theory follows

from condition 2) and VI.17

- 8 5 M¥a
“max T ™ U T2 0 505y ) vI.18
a
As an example, for uy, = 0.138 m/s kK = 20 m~1
max

The waves corresponding ta this wavenumber are indeed gravity waves.
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§VI.5 Growth due to the flow in the water.

In &V.3 the phase velocity is approximated by the form it would have
when the density of the air is taken zero. This expression (V.37) can

be further approximated if

K Tk Unk 2
K - o g REA ad e lATa)
DWUOKO (2 K] << X + - + ( T )

This will usually be the case. Then the expression reads

- 1
c[‘J):U_UJIKQ+[9}z+B+[£Q|§.{1]2]2+

o 2k " 2k
ko
+ 1 W [ lijnk?}gz_UK ] =7 - 2k ] VI-IIBA
g+__+(.nbn] )2
kK Pw 2K

Though this is a zeroth order expansion in 6 the flow in the air has

influence on it. This can be seen by using V.4

_gu*az
Uk = -—=
0o Vi
The reason for this correlation is that the basic flowe in air and water
depend on each other through the continuity equations at the inter-

face II.8, even if the eir has zero density.

The imaginary part of VI.1B8Acan be seen to be positive for

g LS 3
K>k and U >lj K Cw > vI.1s
s 07 kg 3 kg + (Koy?
4 K 2k

This would demand rather large values far the flow at the surface;
for KO: 250 m_1 and k= 500 m_1 the minimum flow would be Uoc: 0.85 m/s.
However, when V.19 is fulfilled it is doubtful whether V.37, on which

VI.19 is based, is still valid (see §VI.1).
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§VI.6 Energy-transfer from wind to waves.

In this section an expression is derived governing the change of the
total energy of air or water. This change is expressed in quantities that
can be measured at the interface of the two fluids, like the normal
pressure. The change in the energy may be manifested as an increase

of the energy of the waves, of the internal energy or of the energy

of the basic flow. It will be shown that for gravity-capillary

waves the increase of the energy of the waves is due to the shearing
stress as well as to the normal pressure. The normal pressure dominates

the transfer of energy.

To derive the change of the total energy I use the equation for con-
servation of energy for an incompressible fluid with uniform density.

It can be written as (cf. Batchelor, '81 p 157)

-g-t‘:%u2+ £, o +‘{’] - %‘j [ui(‘P‘Sq + ")./uei.s)] +

d 3T
+S-;L;(L<H S ) VI.20

e“ is defined by II.1, Eint is the internal energy and SP is the
potential for the body force; in the present case "Y= 9\/

The last term due to the temperature gradient is taken zero. The rmotion

is supposed to be uniform in the Z -direction and periodic in X and t .

The above equation concerns the energy density 6:. This density is inte-
greted over the depth and the mean over one wavelength is taken.

By defining the energy per unit area E to be
Aon
'
E=&'{f{_dzdx
o -d

the following equation can be derived

+<(u“VVlu)/"(§%+%—¥<)> V.21

< > means averaging over one wavelength; all quantities at the r.h.s.
are to be taken at the interface. The quantities are all continuous
over the interface so they can be calculated either in air or in water.

It follows from VI.21 that both the normal pressure (the first term at
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the r.h.s.) and the stress (the second term and third term) at the
interface contribute to the change of the energy of the fluids, The

derivation of VI.21 and its interpretations are due to Komen, unpublished
notes,

In the present case all guantities of VI.21 can be expressed in terms of

e (- d)
the besic flow U and the streamfunction y= ?( )

This implies an expansion in the wave stespness ¢ (cf. chapter II).

The various expressions are here put together; they follow from II.9,
10, 18 and 22 :

ik (x-ct
q': O + ¢ 2#60 e )

k(e -ct)
v=0 - Eik\poe )

k(x-ct)
w=U, + ahp e

o , ' ik (x-ct)
F.—.O+£(>l<[-;vl<((? “P)*We‘f +utf°]0.

This leads to the following igentitics
<pi> - c%w[rm ¢ - R Rew-?')] Hle) e

< (un, +V)'2./u 5% > = € \{ok’/v el P\e(\p) + 0 (€?)

<Cumm B+ B =kl U pedle (U v

Im \p'Imnf" - Re Y’ (Re \P" - ‘\] VI.23

The energy of the wave motion is [Ewa\/e = < e‘j'f + TYI: 7).
3 _'k-;
= 2 a B —= » 3
Ewo.ve"’-ewz' w:(cj-t Pw + O(E.

For small values of UOKO this becomes (V.37 is used)

o ko \*
el (e 32) - 000

M
"
PI-
0
z
m

wore VI.24
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Substituting VI.22 - 24 in VI.21 gives the rate of change of the

energy of either air or water

bE.\

_/J kUU '?'/J %. L[RE \P“(RQ\? —1) - TW\\,P:\EW\\P:]"\'
chewg Imw, LR %
+ Ewo’v‘ e\" (wo v uo o\ { 4 e
(3(- LIUO) Re \Py\ uh
- C ¥, T e ]} + O(E})

From VI.25 it can be deduced wnether the normal pressure or the

nza eor w V1,25

shearing stress or both contribute to the growth of the waves.
First of all it must be clear which part of VI.25 adds to the energy of

the waves and which part to otaer forms of energy. The equality
. BE\AN.)..\IB
2k Ime = B ove ot
and V.41, the expression for /3=l<]}hf, answer for this. It is seen that
both the normal pressure and the stress take part in the energy transfer
to the waves. This is in contrast to the inviscid case (see §VI.1)

where the normal pressure alaone causes the growth (naturally, as there

is no shearing stress when there is no viscosity]).

With the use of the LWP-model it was shown in §V.5 that the term propor-
, - w . . .

tional to Rno qa dominates the growth of gravity-capillary waves.

Looking at VI.22,23 and 25 this can now be seen to imply that the

normal pressure dominates the energy transfer.

The term -<pn) is indeed the one usually measured to obtain growth-rates
due to the wind (Plant, '82). From necessity this is not done at =zhe
interface but a little above it. In §VI.2 it was discussed that the
viscid streamfunction, which dominates the term —<‘=ﬁ), falls rapidly

to zero above the surface. This means that the measurements will have

to be done very close to the surface to be able to see anyting of the

dorinating term of —(Pﬁ) . The height would have to be less than.

say,

N
= K RQ3

Yemax
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Yax is chosen such that the Airy-function, which characterizes

the viscid streamfunction, is at this height about one third of whst

it is at the surface. For a typical case of gravity-capillary waves

=2 .
ymax em
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VIT Conclusions.

- An analytical description of the initial stage of wave growth due

t> the wind based on instability of shear flow is possible.

- Viscosity is essential for the instability of wind over waves
i the gravity-capillary region ( A~ Cm) . This explains why these

waves grow while the critical height is within the viscous sublayer.

- A linear wind profile can be used to describe the growth of gravity-

capillary waves by wind. Approximating this growth with a relative

accuracy of Ra_2/3 leads to growth-rates that agree with numerical
values in the estimated range of validity of the approximation.
u
Tnis range is 20 € $1E~ < 25.
a

- Both the normal pressure and the shearing stress at the surface
contribute to the energy transfer from wind to gravity-capillary waves.

The term proportional to the normal pressure - (Pﬁ) -dominates this

transfer.

- The inviscid theory of Miles concerning the instability of shear
flow is valid only when the wind velocity at the top of the viscous
sublayer is less than the phase velocity. This argument leads to a
maximum wavenumber for the Miles' theory to be valid of 5 - 20 m_q,

depending on the airflow. For comparison, the validity of the expression

for the growth in the viscid theory as derived in the present study
is k >120 - 500 m .
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