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Abstract. We present a new statistical method to optimally European summer of 2003 Schar et al. (2004). Speculations
link local weather extremes to large-scale atmosphernitieir about a positive feedback of dry soil on the persistenceef th
lation structures. The method is illustrated using Juhgést  blocking high can also be found in the literature Ferrand an
daily mean temperature at 2m height (T2m) time-series ovewiterbo (2006).

the Netherlands and 500 hPa geopotential height (Z500) In order for climate models to correctly simulate the prob-
time-series over the Euroatlantic region of the ECMWF re- ability of extreme hot summer days, a crucial ingredient is
analysis dataset (ERA40). The method identifies patternshe correct simulation of the probability of the occurrence
in the Z500 time-series that optimally describe, in a pre-of blocking. This is a well-known difficult feature of the
cise mathematical sense, the relationship with local warmatmospheric circulation to simulate realistically Peliyda
extremes in the Netherlands. Two patterns are identified; th Hoskins (2003). The verification of models w.r.t. this agpec
most important one corresponds to a blocking high pressurgs, in practice, difficult as well, since idealized model exp
system leading to subsidence and calm, dry and sunny coriments suggest a high degree of internal variability of kloc
ditions over the Netherlands. The second one correspondsig frequencies even on decadal timescales Liu and Opsteegh
to a rare, easterly flow regime bringing warm, dry air into (1995).

the region. The patterns are robust; they are also identified |n a world with increasing concentrations of greenhouse
in shorter subsamples of the total dataset. The method igases, not only the temperature increases, also the leae-s
generally applicable and might prove useful in evaluatirg t  circulation adjusts to achieve a new (thermo)dynamical bal
performance of climate models in simulating local weathergnce. Models disagree on the magnitude and even the di-
extremes. rection of this change locally van Ulden and van Oldenborgh
(2006). For instance, a change in the probability of Eurapea
blocking conditions in summer immediately impacts the fu-
ture probability of European heat waves. This makes prob-
ability estimates of future European heat waves very uncer-

Weather extremes such as extreme wind speeds, extrenj@in- To address the questions concerning the probabfiity o
precipitation or extreme warm or cold conditions are expe_future extreme weather events, and the evaluation of oimat

rienced locally. They are usually connected to circulationM0del simulations in this respect, itis necessary to haee ad

structures of much larger scale in the atmosphere. For examscriptive method that links local weather extremes to large
ple, if we restrict ourselves to the Netherlands, a wellvno scale circulation features. To the best of our knowledge, an
circulation structure that often leads to extreme hot summe ©Ptimal method to do so does not exist in the literature.

days is a high pressure system that blocks the inflow of cooler e identified two approaches in the literature to link lo-
maritime air masses. Moreover, the subsidence of air in itsc@l Weather extremes to large-scale circulation featuhes.
interior leads to clear skies and an abundance of sunshihe ththe first one, the circulation anomalies are classified first,
leads to high temperatures. If the blocking high persists an the connection with local extremes is analyzed in secqnd in-
depletes the soil moisture due to lack of precipitation and i Stance. The “Grosswetterlagen” developed by synoptic me-

creased evaporation, temperatures tend to soar, as itfid in teorologists for instance is one such classification Kysely
(2002). All kinds of clustering algorithms are another ex-
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Fig. 1. The leading two EOFs for the July and August Z500 daily angrfiald for 43 years of ERA-40 data (1958-2000). Left figure:
first EOF; right figure: second EOF. Relative importanceslarg7% and11.79% respectively. The patterns have been multiplied by one
standard deviation of the corresponding amplitude tintees€in meters).

our opinion, this approach is not optimal since in the defi- extreme T2m anomalies, supported by the additional details
nition of the patterns, information about the extreme is notin the Appendix. In Sec. 4 we identify the large-scale Z500
taken into account. anomaly patterns that are associated with hot summer days in
In the second approach, a measure of the local extreméhe Netherlands, demonstrate the robustness of our method
does enter the definition of the large-scale circulation pat and compare the patterns with patterns earlier reporteétin t
terns. For instance, only atmospheric states are considerditerature. Finally we conclude this report in Sec. 5 with a
for which the local extreme occurs. Next a simple averagingdiscussion on the possible applications of our method.
operator is applied [‘composite method” as in Schaeffel.et a
(2005)]or a clustering analysis is performed Sanchez-Gome
and Terray (2005) . The composite method falls short since2 The T2m and Z500 datasets, and EOF analysis of the
it finds by definition only one typical circulation anomaly Z500 data
and from synoptic experience we know that often different
kind of circulation anomalies lead to a similar local weathe Our data have been obtained from the ERA-40 reanaly-
extreme. The clustering analysis is debatable since thee datsis dataset, for the timespan Sept. 1957 to Aug. 2002,
record is often too short to identify clusters with enought st at 6 hourly intervals on 2.5° x 2.5° latitude-longitude
tistical confidence Hsu and Zwiers (2001). grid. These data are publicly available at the ECMWF
The purpose of this paper is to report a neptimal websitehttp : //data.ecmwf.int/data/d/era40_daily/. The
method to relate local weather extremes to characteristic ¢ T2m data over entire Europe, defined 3 5°N-70°N and
culation patterns. This method objectively identifies, lma  10°W-40°E, and the Z500 data ove0°N-90°N and60°W-
bust manner, the different circulation patterns that faker ~ 60°E were downloaded. From these, the daily averages for
occurrence of local weather extremes. The method is in-T2m and Z500 fields for the years 1958-2000 (all together
spired by the Optimal Autocorrelation Functions of Selten 43 years in total) were computed. This formed our full raw
et al. (1999). It is based on considering linear combination dataset.
of the dominant Empirical Orthogonal Functions that maxi- In order to remove possible effects of global warming in
mize a suitable statistical quantity. We illustrate ourlmogt  the last decades of 20th century, detrending these fields pri
by analyzing the statistical relation between extreme highto performing further calculations would be necessary. How
daily mean temperatures at two meter height (T2m) in Julyever, an analysis of the Z500 daily averaged field revealed
and August in the Netherlands and the structure of the largeno significant linear trend over these 43 years. Therefae th
scale circulation as measured by the 500 hPa geopotenti@500 daily anomaly field was obtained by simply removing
height field (Z500). the seasonal cycle defined by an average over the entire pe-
This paper is divided into five sections. Section 2 is fo- riod of 43 years. Greatbatch and Rong (2006) showed that
cused on the data, where we explain the method to obtaiwver Europe, the trends in the ERA-40 reanalysis and NCEP-
the daily Z500 and T2m anomalies in Europe, and report theNCAR reanalysis are indeed small and similar.
results of the EOF analysis of the Z500 anomaly data. In A warming trend, however, is clearly present in the T2m
Sec. 3 we outline the procedure to optimize the quantity thafield. For detrending the T2m field, the monthly averages for
describes the statistical relation between the 2500 and thduly and August were calculated from the daily averages at
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each gridpoint. Next, 11-year running means were compute@® Optimization procedure to establish the connection
for these monthly averaged T2m fields (for July and August  between Z500 anomalies and local extreme T2m
separately), and that formed our baseline for calculataily d
T2m anomaly field. This procedure does not yield the baseOne of the first approaches we considered to establish the
line for the first and the last 5 years (1958-1962 and 1996-connection between Z500 daily anomaly fields and extreme
2000); these were computed by extrapolating the baselingaily T2m is the so-called “clustering method”, which iden-
trend for the years 1963-1964 and 1995-1996 respectively. tifies clusters of points in the vector space spanned by the
For the EOF analysis of the Z500 anomaly field, note thatdominant EOFs. The daily Z500 anomaly field for July and
most of the variance of atmospheric variability resideim t August over 43 years yields us precisely 2666 datapoints in
low-frequency part [10-90 day range Malone et al. (1984)].this vector space. A projection of these daily anomalies on
Indeed, the dominant EOFs of Z500 anomaly fields provedthe two-dimensional vector space of the two leading EOFs
insensitive to the application of 3-day, 5-day, 7-day, 9-da (EOF1 and EOF2) is shown in Fig. 2. No clear clusters are
and 15-day running mean filters. For the sake of simplicity,apparent by simple visual inspection. One can imagine that
therefore, we decided to only consider EOFs based on dailgefining clusters using existing cluster algorithms to iden
Z500 anomaly fields. The EOF analysis was performed orfify clusters of points that correspond to specific largatesc
the regular lat-lon grid data with each grid point weightgd b  circulation patterns that occur significantly more fregiyen
the cosine of its latitude to account for the different siaes than others is not a trivial undertaking. Often it turns out
the grid cells. Using these weights, the EQ¥zsare orthog-  that using 40 years of data or so, the clusters identified are
onal in space (note here that we use the same definition othe result of sampling errors, due to too few data points Hsu
vector dot product in space all throughout this paper) and Zwiers (2001); Berner and Branstator (2007); Stephen-
son and O’Neill (2004).
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where the angular brackets denote a time average ang

denotes the eigenvalue of theh EOF which is equal to the  Fig. 2. Projection of the daily Z500 anomaly field for July and

variance of the corresponding amplitude time-series. August months for 43 years in the two-dimensional vectorcepa
We found that July and August months produced very sim-spanned by the two leading EOFs.

ilar EOFs, while June and September EOFs were signifi-

cantly different. We therefore decided to restrict the stenm Nevertheless, when we plot the T2m positive anomaly val-

months to July and August. The leading two EOFs for theues at the center of the Netherlan83.6°N, 5°E) in a scatter

corresponding daily Z500 anomaly for 1958-2000 are shownrplot with the amplitude of EOF1, a distinct “tilt” in the seat

in Fig. 1. The values correspond to one standard deviatiorier plot emerges: i.e., with increasing amplitude of thaiea

of the corresponding amplitude. The two EOFs are not welling EOF, the likelihood of having very hot summer days in-

separated (the eigenvalues are close together) and theerefocreases. Having inspected the same plots for the other EOFs

we expect some mixing between the two patterns North et alwe found a similar tilt for some of the other EOFs as well.

(1982). A linear combination of the two EOFs shifts the lon- From this point of view, finding the statistical relationghi

gitudinal position of the strong anomaly over Southern Scan between T2m at a given place and the state of the large-scale

dinavia which is present in the first EOF. It resembles theatmospheric circulation can be reduced to a mathematieal ex

summer NAO pattern as diagnosed by Greatbatch and Rongrcise that finds those linear combinations of EOFs that op-

Greatbatch and Rong (2006) (their figure 8). timally bring out this tilt. In the remainder of this section
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supported by the Appendix, we presergemeral, rigorous only on L and on the coefficieméjf). For a given value of

and robust procedure to achieve this. L, C.g'f) are found by maximizing the square df*) within
the vector space of the firstEOFs (the square is taken since

10.2 0 i
ry ’ can take on negative values as well).
If we define forT'(¢) > 0,
w S - [T®))"
Ts) et To(t) = 7y (7)
6.8 - e - n
> e o,
'c"\]? then Eq. (5) can be rewritten fér= 1 as
Lo
N—r L ~
S () _ 7O Tt .
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2
.- In words, maximizing r%L) defines a pattern that for a
0 A : S change of one standard deviation in its amplitégddorings
-25e4  -15e4  -5e3 5e3 1.5e4 2.5e4

about the largest change in the normalized positive tempera
EOF1 amplitude ture anomalyT}, or put differently the local temperature re-

sponds most sensitively to changes in the normalized ampli-
tude of this pattern. In this sense, the pattern is optimally

Fig. 3. Scatter plot of T2m> 0 at the center of the Netherlands linked to the local warm temperature extremes.

vs. the amplitude of leading Z500 EOF (EOF1). With incregsin . . . N K

amplitude of the leading EOF, the likelihood of having veth 't 1S Shown in the appendix that max'm'z"{gl cor-

summer days increases. responds to the linear least squares fit of the EOF amplitude
timeseries td}p(t)

To represent this statistical relationship, we start byrdefi

ing the following dimensionless quantity - L
(1) TP ) =3V a0). (©)
BP0, - =
k. 1 ) . o .

<{bl(f)(t)} 2>g (T(®)]™)p with the coefficients:;; given by
Here the angular bracketg, denotes a time average taken (., o
only over those days for which T2i) > 0, andn isapos- "1 €1 = Z<ai (B)a;(t)p " (To(t) ai(t))p (10)
itive number> 1. The idea behind choosing > 1 is that =1
for higherT'(t) it gives larger contribution tm,(f): we are in- This result makes sense since the linear least squares fit

terested in high-temperature days at gridpginwe choose  optimally combines the EOF amplitude timeseries to min-
n = 2 for this study. The Variab|él(f‘)(t) is the amplitude ~ imize the mean squared error between the actual tempera-
on day¢ of a pattern, defined as a linear combination of theture anomaly and the temperature anomaly estimated from
first L EOFs. Sincel linear combinations can be defined the circulation anomaly at that day.
that form a new complete basis in the subspace of theffirst ~ The procedure to find the remainitg — 1) linear com-
EOFs we use the subscriptto denote these different linear binations is as follows. We first reduce ti&00 anomaly
combinations. fields to the(L — 1) dimensional subspa&500“ ) that

We first concentrate on the calculation of the first pattern.is orthogonal to the first linear combination. In this sulzgpa
Using Cﬁ) to denote the coefficients of this first linear com- W€ again determine the linear combination that optimizes

bination then Ty ). By construction, this value is lower that{\L). This
I procedure is repeated to determinelallnear combinations
BB () = Z Cﬁ) a;(t). (6)  with decreasing order of optimized valud$’.
=1 There is no unique way to define the subspaces and how

this is done affects the properties of the linear combimatio

, (L) The linear combinations can either (a) be constructed ta for

those days for which T2(m) > 0, (b7 (¢))p # 0, although 4 rthonormal basis in space, in which case their amplitude

(bi" (1)) = 0 since(a; (1)) = 0. are temporally correlated; or (b) they can be constructed so
Equations (5-6) imply that given the time-series of T2m that the corresponding amplitudes are temporally uncorre-

and Z500 anomalies, the numerical valueré)lf) depends lated, but in that case they are not orthonormal in space. In

Notice that since the time averages are taken only ove



Debabrata Panja: Linking Local Extremes to Large-scaledSipheric Circulations 5

15 T T I T I T I T 15 T T I T I T I
- 4——7*0***”’7*7*7+7‘77‘
r [
1 1 —‘ e ek=1 |
riL) r(ku ——e k=2
0.5 0.5 -

0 20 40 60 80 100

Fig. 4. The behavior of- as a function of. for the first (red) and second (blue) EAFs. Left panel: pageare orthogonal in space, but are
correlated in time [option (a) in text]; right panel: patierare uncorrelated in time but are not orthogonal in spamiofo (b) in text].

both cases, they form a complete basis in the space of the The procedure to determirde. for the daily summer (July
first L EOFs and August) temperature in the Netherlands [represented by
T2m at 62.5°N,5°E)] and Z500 daily anomaly field over the
region20°N-90°N and60°W-60°E for 43 years (1958-2000)
is as follows. As can be expected, bot{t"r) and réL) are
increasing functions with. [Fig. 4(left)] and the variance

We will call the patterné’,gL) Extreme Associated Func- assolciated With the corresponding EAFs.tends to de)crease
tions (EAFs). The mathematical details on how to obtainWith increasingZ, (not shown here). For option (a), bottf

b;(cL)(t) for both options can be found in the Appendix. andry "’ improve significantly when including EOF12 in the
linear combination; at the same time the variance of EAF1

decreases and the variance of EAF2 increases. Also the cor-
responding patterns change markedly. BetwEen 12 and

L = 15 the patterns;-values and variances remain relatively
unchanged. Beyond = 15 ther-values steadily increase,
the variance decreases and the patterns become “noisier”. S

We now need a criterion to determine the optimal I,]uI,nbermultaneously, thetempo_ral_ correlation between the dontina
of EOFs in the linear combinations. The reason for limiting two EAF patterns stead(ﬂgg mcre:’E\Ls)es with For largeL, as

the number of EOFs in the linear combinations is apparenfig. 4(left) shows, both; ™" andr;™ values saturate to val-
from Eq. (10). Here the inverse of the covariance matrix Ues very close to each other, and the solution tends to become
of the EOF amplitudes appears. This matrix becomes closdegenerate. Our interpretation of this is that the inforomat

to singular when low-variance EOFs are included in the lin-that is contained in th&/500 anomaly fields about the lo-
ear combination. This makes the solution for the coeffisient cal temperatures in the Netherlands is shared among increas
cgi) ill-determined [see the general linear least squares sedngly more patterns, which is an undesirable characteristi
tion in Press et al. (1986) for a detailed discussion on thisi For example, foil. = 12, the temporal correlation between
sue]. Typically what is observed is that the inclusion of nan EAF1 and EAF2 i9).58, for I, = 50 it is 0.93. Based on
more low-variance EOFs only marginally improves trléé) these findings, we considé. to be equal td 2.

values, but that the corresponding patterns describedgss v A similar graph for EAFs calculated following option (b)
ance and become “noisier” i.e. project onto Z500 variationsare also displayed in Fig. 4(right). By construction, thiiga

at progressively smaller wavelengths. The optimal value ofof T§L> is the same. In this case, the variance decreases as
L in a statistical procedure like this, denotedy is subjec-  well with increasingl, but much less so. The corresponding
tive, but nevertheless can be found from a tradeoff betweematterns are quite stable beyohd= 19. It is only beyond

the amount of variance that the patterns describe and theif. = 200 or so that the second EAF more and more resembles
r-values. the first EAF; forL = 19 the spatial correlation between

L
25009 () = Y "ol () £ (11)
k=1

4 Statistical relationship between high summer temper-
aturein the Netherlands and large-scale atmospheric
circulation structures
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Fig. 5. The leading two Z500 daily anomaly patterns (EAFs) that asoaiated with warm July and August daily temperatures én th
Netherlands: EAFs orthogonal in space, corresponding.te= 12 (top panel); EAF amplitudes uncorrelated in time, corresiing to

L. = 50 (bottom panel). The first EAFs are shown on the left, and tlers® EAFs are shown on the right. All patterns have been
multiplied by one standard deviation of the correspondimglg&ude time-series (in meters).

EAF1 and EAF2is only 0.2 (they are almost orthogonal), for formation about the local warm temperatures in the Nether-
L =200itis 0.4 and forL = 500 itis 0.8. By construction, lands that is contained in the amplitude timeseries of EAF2
the temporal correlation between EAF1 and EAF2 remainds already captured by EAF1; they are not independent. The
zero. In this case, the choice 6fis not so critical and we ré” value is smaller for option (b), but at least the infor-

simply choosé.. = 50. mation it contains about the local warm temperatures in the
The results for the spatially orthogonal EAFs correspond-Netherlands is independent from EAF1. Given these consid-
ing to L. = 12 and that for EAFs uncorrelated in time cor- erations, we conclude option (b), constructing EAFs that ar
responding ta.. = 50 are shown in Fig. 5. The first EAFs temporally uncorrelated is the best option.
obtained from options (a) and (b) are very similar; the diffe
ences in the second are bigger. The first corresponds to a high The scatterplots df;==*" andb}"<=*") against the posi-
pressure system, leading to clear skies over the Nethexlandtive temperature anomalies in the Netherlands for EAF1 and
an abundance of sunshine and a warm southeasterly flow. IFAF2 that are uncorrelated in time are shown in Fig. 6. Com-
addition to this circulation anomaly, the method finds aeoth pared to the EOF with the largestalue (EOF1, see Fig. 3),
pattern that occurs less often; EAF2 corresponds to an easthe relationship of)gLC:‘r’O) to temperature is much stronger.
erly flow regime bringing warm dry continental air masses Ther value of the first EAF is almost a factor of 2 larger. The
to the Netherlands. Option (b) gives a more localizéd)0 main contribution to the first EAF is from the first EOF, but
anomaly pattern, with a warm, easterly flow into the Nether-also EOFs 3,4 and 6 contribute substantially. Only two EAFs
lands. Option (a) also captures the warm, easterly flow, butire found with a clear connection (i.e., a tilt in the scatter
is less localized and is less well defined as a functiofi.of plot) to warm extremes in the Netherlands. This information
The réL) value is larger for option (a), but it is temporally was spread mainly between EOFs 1, 3, 4 and 6. Regressing
correlated to the first EAF. This implies that part of the in- Z500 anomalies upon the temperature time-series in the Bilt
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Fig. 6. Scatter plots for the amplitudes of EAF1 (left) and EAF2[ft)ghat are uncorrelated in time, correspondind.to= 50, against the
daily mean two meter temperature in the Netherlands.
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Fig. 7. Daily Z500 anomaly field regressed on daily mean temperatirdhe Netherlands in July and August in meters/Kelvint)lef
Composite 2500 daily anomaly field for 5 warmest days in Jualy August in the Netherlands over the period 1958-2000 irerset

gives a pattern that resembles EAF1 (Fig. 7). Also a simpletime data and the last 21 years (1980-2000). In both cases we
compositing (averaging the 5 percent hottest days) yields dound very similar EAF1 patterns and corresponding scatter
pattern very similar to EAF1 (Fig. 7). In addition to thiseth plots as for the full period. EAF2 however is only recovered
EAF method is able to identify another, less dominant, flowin the second period. One interpretation of this is that EAF2
configuration that leads to warm weather in the Netherlandss less frequently present in the first period. As argued by
through advection of warm airmasses from eastern Europe.iu and Opsteegh (1995) this variation could be entirely due
Comparing EAF1 to the clusters of summer Z500 anomaliedo the chaotic nature of the atmospheric circulation andinee
published in Cassou et al. (2005), we note that EAF1 is anot be caused by a factor external to the atmosphere (as for
combination of their ‘blocking’ and ‘Atlantic low’ regimes instance increasing levels of greenhouse gases, changes in
that favour warm conditions in all of France and Belgium sea surface temperatures or solar activity to name a few).
(temperatures in the Netherlands were not analyzed). The

easterly flow regime is not present in their clusters. Instead of taking all positive temperature anomalies, a

threshold could be introduced to Analise only the more ex-
In order to check that this method to identify the relevant treme warm days. However, limiting the analysis to the 30%
large-scale atmospheric circulation patterns for warnsdiay ~ warmest positive temperature anomalies did not qualébtiv
the Netherlands is robust, we have also performed the samehange the first two EAFs. Also varying the value of the
analysis for the first 21 years (1958-1978) of daily summer-power applied to the temperature anomaly from 1 to 3, only
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quantitatively modified the resulting EAFs, but not qualita funded by the European Commission’s 6th Framework Progamm
tively. A final test of robustness was that we limited the anal through contract GOCE-CT-2003-505539.

ysis to a smaller domain. Again we found the same two EAF
patterns on a much smaller domain from 20 degrees east t
32.5 degrees west and 35 to 70 degrees north. The meth
thus produces robust patterns.

ppendix Calculation of the EAFs by a repetitive maxi-
mization procedure

Since the entire appendix describes the procedure to atécul

5 Discussion: Applicability of the Extreme Associated bECL), i.e., theby-values for a giverd., we drop all superscripts
Functions involving L for the sake of notational simplicity.

The Extreme Associated Function method developed in thisA.1. Calculation of the first EAF

study to establish the connection between local weather ex- ) o o

tremes and large-scale atmospheric circulation strustas 10 CQaIcuIate which set of coefficients; maximize the value

several potentially useful applications. of 11 as expressed in Eq. (8) we take the variation?ofv.r.t.
First of all, since this method proved to satisfy severdstes Variationsic;, and using Eq. (6), obtain

of rigor and robustness for the temperature extremes in th%rz — 9%

Netherlands, it can be applied for local temperature ex¢em  *

at any other place, or for that matter for other forms of ex- ~ ~ max2

treme local weather conditions as well, like precipitatan E{@(t)ak(t)>p<T(t)al(t)>p_[rl 1 <ak(t)al(t)>p}c”6€kl

wind. In this sense the method is quite general. OP
EAFs can be used to evaluate the performance of cli- pf b= 1 I (A1l

mate models with respect to the occurrence of local weather ork=1,...,L.(ALl)

extremes. The EAF method helps to answer the questiofhis means that with the Lh.s. of Eq. (A.1.1) set to

whether the climate model is able to generate the same pabero at the maximum of? for any choice ofscy;, we

terns that are found in nature to be responsible for localpptain a generalized eigenvalue equation: if we denote

weather extremes with a similar probability of occurrerrce i (T(t)ar (£))p(T (t)ar(t))p by ax, ar, and[(ax (t)a (t))p] by vZ,
an objective manner. In addition, to evaluate the impact ofthen Eq. (A.1.1) leads to

climate change on local weather extremes, the EAF method
helps to answer the question whether the probability of cer-Z

tain local weather extremes changes in future scenario simz {avar — [T o3} en = 0. (A.1.2)

ulations due to a change in the probability of occurrence of!=!

the EAFs. Equation (A.1.2) can be written as a matrix equation
It might be found that some climate models are able to . a2 < 72

simulate the EAFs, but do not reproduce the local extremed €1 = [rT®9° Ve, (A-1.3)

well. Lenderink et al. (2007) for instance found that regibn |\ 1 ora the(k, 1)-th element of matriced andV? are given
climate models forced with the right large-scale circalati by ar, a; andv?, respectively, and thth element of the col-
structures at the domain boundaries nevertheless tended {g,,, vectore; is given byc;. Note that in Eq. (A.1.2)
overestimate the summer temperature variability in Europevil o 0, since the time-average is defined only over the

due to deficiencies in the description of the hydrological cy days for which T2n) > 0. Since matrixA is a tensor prod-

cle. The EAFs can be used to correct the model output foruct of two column vectors — &4, where the superscript

this discrepancy by applying the observed statisticatiaia “T" indicates transpose, the matrix equation (A.1.3) haly on
ship between the EAFs and the local extremes to the mode(gne eigenvector with n(')n-zero eigenvalue, given by

generated EAFs.
By choosing the particular form efin Eq. (5) asthe quan- ¢; «« V2a. (A.1.4)

tity to be optimized, the EAF method turns out to be equiva- ]

lent to multiple linear regression. Other measures to descr OF €quivalently

the statistical relationship between circulation and terap L
ture present in the scatterplot of Fig. 3 could be designaid th cj1 o Z<ai(t)aj (t)>51 <Tp(t) ai(t))p. (A.1.5)
would make the EAF method different from a multiple linear 1

regression technique. In this sense, the EAF method is mor
general and potentially can be improved by designing a mor
apt measure.

rf‘he corresponding optimized valug is determined from
Eq. (A.1.3).

The equivalence between the maximization-bfand the
Acknowledgements. We thank ECMWF for making the Z500 data Mmultiple linear regression df,(¢) on the timeseries of the
publicly available. We also acknowledge the ENSEMBLES@ctj  EOF amplitudes(¢)'s [see Eq. (9)] is apparent by noticing
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that the above solution far; is the same as the solution of yields, using the fact that the EOF amplitudes are uncorre-
the multiple linear regression problem given in Eq. (10). lated in time,
How the EAFs are determined from the coefficiesyisis

shown in the next section in which we explain the calculation

- = i il =0 A.2.8
of the remaining L — 1) EAFs. Z et = Z ci 0} cit = O ( )
A.2. Calculation of the remainin@. — 1) EAFs We then define
As explained in the text, the calculation of the remaining
(L — 1) linear combinations requires a choice between two fi = ch’“ oiei fork=1,...,L (A.2.9)

options. (a) The patterns are orthogonal in space, or, &) th =l

amplitude timeseries are uncorrelated in time. We will showin terms of which Eq. (A.2.7) can be re-expressed as
the implementation of both options.
We first discuss option (a). (A-2.10)
Combining the expansion @&500(t) into EOFs as in Eq.
(2) and into EAFs as in Eq. (11) gives the following relation cally normalized to unity. For option (b), the pattefacan
between the EOFs and EAFs be normalized to one, but the normalizatiorgafshould be
L adjusted as well in order for Eqg. (A.2.10) to remain valid.
ei=Y cifi fori=1,... L (A.2.1) To obtain the rest of thél, — 1) EAFs, the procedure de-
k=1 scribed in Appendix A.1 needs to be repeatedl times, but
Option (a) demands the EAFs to be orthonormal in spacecertain care needs to be taken because of the orthonormality
which leads to the following condition for the correspond- conditionimposed by the definition of the set of EAFs. When
ing coefficients:;;, where we start from the orthonormality these subtle issues are taken into account, the procedure be
condition of the EOFs comes a repetition of the following three steps.

fr -8 = du.

Note here that for option (a) the patteffjsare automati-

L L
. p . )

e — e B £ = e Cin = O A2.2 (i) ConstructZ500’(t), the Z500 daily anomaly field that

! kgl Cik Gt T ; ik Gk ’ ( ) lies within the vector subspace of the filstEOFs but

o ) _ orthogonal to the first EAF. This is achieved in the fol-
Additionally, it can be easily shown that lowing manner.
L First define

Z Cik Cil = 5kl- (A23)
i=1 e; =€; — (ej fl) fl =€; — (Cj1 f1 (A211)
Using Eq. (A.2.3), it is now straightforward to show from
Eq. (A.2.1) that the EAFs can be calculated from the EOFs for j = 2,..., L. The dot product of both sides of Eq.

as (A.2.11) withZ500(¢) then yields

L

fk:ZCikei fOkal,...,L.
i=1

Using this definition for the EAFs, the corresponding ampli-
tudesby(t) are found by

(A24) a;- (t) = aj(t) — Cj1 by (t) forj = 2, ceey L (A212)

for option (a). For option (b), the corresponding expres-
sion is

bi(t) = fi - Z500(1). (A.2.5) ai(t)=a;(t) — c;1 o2 by(t)for j =2,..., L. (A2.13)
We now discuss option (b).
For option (b), Egs. (11) and (A.2.5) cannot hold simul- (i) Calculate the coefficients, forj = 2, ..., L that max-
taneously. To obtain the coefficientg for this option, we imize ro.
start with Egs. (11) and define
L
L L - 1
bi(t) = Zcik ai(t) = Z cin ey - Z500(t) ToCiy = ;@;(t)a}(t»p (Tp(t) ai(t))p (A.2.14)
i=1 i=1 B
=gy - Z500(t) (A.2.6) with
Then the conditions that, (¢) andd,;(t) are uncorrelated in I I
time, i.e., ba(t) =D chadi(t) =D cjpas(t) (A.2.15)
(b (t) bi(t)) = Ona (A.2.7) j=2 j=1
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(iii) Next the coefficients:;, are calculated from the coeffi-
cientsc),. For option (a) substitution of Eq. (A.2.12)
into Eq. (A.2.15) leads to

Debabrata Panja: Linking Local Extremes to Large-scateospheric Circulations

Plaut, G. and Simonnet, E. (2001). Large-scale circulatiassifi-
cation weather regimes, and local Icimate over France, the A
and Western EuropeClim. Res., 17:303—-324.

Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vatigrl

L
Cjo = 03-2 — Cj1 Z 622 Ci1 for j= 2, ey L, (A216)

i=1

with the convention that}, = 0. For option (b) substi-
tution of Eq. (A.2.13) into Eq. (A.2.15) leads to

L
Cjo = 03-2 — Cj1 ZCQQ Ui2 Ci1 for j = 2, ey L, (A217)

=1

with the convention that;, = 0.

These steps are to be repeated untiLatbefficient vec-
tors have been determined. For option (a) the EAFs are
then determined from Eq. (A.2.4), for option (b) from
Eq. (A.2.9).
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