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ABSTRACT

A column of dry air in hydrostatic equilibrium is considered, bounded by two fixed values of the pressure,
and the question is asked, what vertical temperature profile maximizes the total entropy of the column? Using
an elementary variational calculation, it is shown how the result depends on what is kept fixed in the maximization
process. If one assumes that there is no net heat exchange between the column and its surroundings—implying
that the vertical integral of the absolute temperature remains constant—an isothermal profile is obtained in
accordance with classical thermodynamics and the kinetic theory of gases. If instead the vertical integral of the
potential temperature is kept fixed—as argued by several authors to be appropriate in the case of convective
mixing—an isentropic profile results. It is argued that, if one wishes to apply the latter constraint, it should be
used as an additional, rather than as an alternative, constraint. The variational problem with both constraints
leads to a profile in between the isothermal and the isentropic extremes. This profile has the merit of reproducing
very accurately the tropospheric part of the U.S. Standard Atmosphere, 1976.

1. Introduction

The question of what vertical temperature profile cor-
responds to the state of maximal entropy was posed
more than a century ago. At first, the discussion took
place within the framework of classical thermodynam-
ics; one considers an ideal gas in a gravitational field
and seeks the state of maximum entropy under the con-
straints of 1) a constant mass and 2) a constant energy
(internal plus potential). The answer—the profile will
be isothermal—was rigorously proven by Gibbs (in
1876, see Gibbs 1961, p. 144ff ) for arbitrary types of
fluids. In the framework of the kinetic theory of gases,
Boltzmann (1896, p. 136) arrived at the same conclusion
by using his H theorem. Despite these proofs, the issue
remained a source of contention and confusion; for ex-
ample, a common misconception was that gravity would
change the nature of thermodynamic equilibrium so as
to create a vertical temperature gradient. Traces of this
debate can be found in the older literature on dynamic
meteorology, for example, in the textbooks by Exner
(1925, 60–62) and Ertel (1938, 72–73). Exner pointed
out that the confusion arose from defining the problem
in an inconsistent way, such as by considering a moving
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parcel in a pressure field without taking into account
the effect that its movement will have on the ambient
field. Emden (1926) attempted to end the ongoing con-
fusion in a section that he gave the pessimistic title
‘‘Periodisch wiederkehrende Irrtümer’’ (which trans-
lates to ‘‘Periodically recurring errors, or misconcep-
tions’’).

In the discussion presented by Maxwell (1888, p.
320), one observes a shift toward a broader framework.
First he discusses the classical formulation of the prob-
lem and its answer (the profile will be isothermal), but
then he argues that, in the actual atmosphere, convective
motions rather than molecular diffusion will be impor-
tant, which he presumes would lead to an isentropic
profile. This idea, plausible though it is, still awaits
rigorous proof. In a recent textbook, Bohren and Al-
brecht (1998, 164–171) discuss this problem in much
detail. They consider an ideal gas in a gravitational field,
and seek the state of maximal entropy under constraint
1 as above, but as a second constraint they choose 3) a
constant integrated potential temperature. Bohren and
Albrecht show that constraints 1 and 3 result in an is-
entropic profile. This can be regarded as a confirmation
of Maxwell’s idea, if one accepts constraint 3 as valid.

Constraint 2 manifests itself as the requirement that
the vertically integrated (absolute) temperature be con-
stant. As we will show below, the same requirement is
found if one relaxes 2 by allowing neighboring layers



932 VOLUME 61J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 1. Schematic representation of a midair atmospheric column,
bounded by the heights z1 and z2. These heights are variable in the
variational process, but the corresponding pressures p1 and p2 are kept
fixed. The column is assumed to exchange no net heat with its sur-
roundings but may perform work on the air above and below the
column.

to do work on the layer under consideration; constraint
2 is then to be replaced by 29, a constant enthalpy. As
a result, here too the outcome is that of an isothermal
profile. Bohren and Albrecht arrive at their constraint 3
by starting with a constraint similar to 29, and then
modify it in an approximate way, which in fact amounts
to replacing 29 by 3. This way of obtaining 3 can be
criticized on the grounds that, had no approximation
been made, one would have found an isothermal instead
of an isentropic profile, which in itself shows that the
approximation is problematic. A different way of jus-
tifying constraint 3 was suggested by Ball (1956), who
argued that the integrated potential temperature will be
constant when convective mixing dominates molecular
diffusion. It is the purpose of this article to suggest a
way of incorporating 3 in the maximization problem
without sacrificing the constraint 29, which after all
stems from the first law of thermodynamics. We will,
in other words, pose 3 as an additional constraint to 1
and 29. This brings us outside the domain of classical
thermodynamics, and hence one can expect that the tem-
perature profile will no longer be isothermal; we will
derive below what profile forms the outcome.

2. Maximum entropy profiles

We consider an atmosphere consisting of dry air of
which the temperature T, density r, and pressure p obey
the ideal gas law p 5 rRT with R the gas constant. For
an atmosphere in local thermodynamic equilibrium, the
total entropy of a given amount of air is the mass integral
of the specific entropy s 5 cp lnu, where u is the potential
temperature. The potential temperature of an ideal gas
is defined by u 5 T( pr/p)k, where k 5 R/cp, with cp

the specific heat at constant pressure, and pr a reference
pressure taken to be 1000 hPa. We disregard the arbi-
trary constant that can be added to the definition of
specific entropy, as it will play no role in the following.

We next consider a vertical column of air with unit
horizontal area, assumed to be in hydrostatic equilib-
rium, ]p/]z 5 2rg, between the heights z1 and z2 and
corresponding pressures p1 and p2 (see Fig. 1). Because
of hydrostatic equilibrium, the total entropy of the air
in this column can be written as

z p2 1cpS 5 rs dz 5 lnu dp. (1)E Egz p1 2

One of the constraints under which we will maximize
the entropy is that the total mass M of the column is
fixed. This mass is given by

z p2 11 1
M 5 r dz 5 dp 5 (p 2 p ). (2)E E 1 2g gz p1 2

For a variation dM, we therefore have

1
dM 5 (dp 2 dp ), (3)1 2g

where dp1 and dp2 are the variations in the lower and
upper pressure. We will impose that no mass flows in
or out of the column by keeping both p1 and p2 at fixed
values.

Fixing p1 and p2 means that we deal with a closed
system: a system that is not allowed to exchange mass
with its surroundings, although it may exchange heat
and work. However, we will assume that the net ex-
change of heat with the column’s surroundings is zero.
This means that changes in the internal, kinetic plus
potential energy are equal and of opposite sign to the
work performed by the system. We ignore the kinetic
contribution; the internal plus potential energy is given
by [see Dutton 1973, Eq. (2.3)]

z2

E 5 r(c T 1 gz) dzE y

z1

p1cp
5 p z 2 p z 1 T dp. (4)1 1 2 2 Eg p2

In addition to hydrostatic equilibrium, use is made of
the ideal gas law, the relation cy 1 R 5 cp between the
specific heats at constant volume and constant pressure,
as well as the rule z dp 5 d(pz) 2 p dz. The work
performed by the system as a result of variations dz1

and dz2 is given by dW 5 p2dz2 2 p1dz1. Using our
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FIG. 2. Pressure (hPa) vs temperature (K). The Standard Atmo-
sphere is represented by the dots. The vertical solid line is the iso-
thermal profile given by (12), with Tr 5 261.36 K. The dashed line
is the isentropic profile (18), with Tr 5 302.04 K. The dotted line is
the intermediate profile (22) with Tr 5 286.90 K and a 5 1.6868.
The value of pr, at which the temperature is Tr, is 1000 hPa.

TABLE 1. The values of H, L, and S for the Standard Atmosphere,
the isothermal profile, the isentropic profile, and the intermediate
profile.

Profile H (109 J m22) L (109 J m22) S (10 7J K21m22 )

Observed
Isothermal
Isentropic
Intermediate

2.0032
2.0032
2.0106
2.0032

2.3150
2.3326
2.3150
2.3150

4.3764
4.3783
4.3769
4.3764

assumption that dp1 and dp2 are 0, we can derive from
(4)

p1cp
dE 1 dW 5 dT dp. (5)Eg p2

Now, dE 1 dW 5 dQ, where dQ is the net amount of
heat added to the column. If in the variational process
no net heat is to be transferred to or from the column,
the enthalpy

p1cpH 5 T dp (6)Eg p2

is to remain constant. We note that the form of this
constraint is holonomic in the sense that a state function
H is kept fixed. The holonomic form is due to the fact
that we have fixed p1 and p2 in the variational process.

In the rest of this paper we shall consider three distinct
types of variational problems: the classical one, the one
proposed by Bohren and Albrecht (1998), and a new
one. It will be interesting to compare the results of each
with empirical values, which we base on a representative
atmospheric profile: the U.S. Standard Atmosphere,
1976 [hereafter Standard Atmosphere, (U.S. Committee
on Extension to the Standard Atmosphere) COESA
1976], as given by Holton (1992, Table E.2). In Fig. 2,
the dots represent the pressure–temperature distribution
of the 19 entries of Holton’s table. We restrict ourselves
to the tropospheric part of the Standard Atmosphere and
consider the data between the pressures p1 5 1013.25
hPa and p2 5 264.36 hPa (the 1st and 11th entry of the

table). We use R 5 287 J K21 kg21, cp 5 1004 J K21

kg21, and g 5 9.81 m s22, which are also taken from
Holton (1992, appendix A). The mass M of the column
is then found to be 7.6339 3 103 kg m22. The corre-
sponding values of enthalpy H and entropy S (as well
as of L, defined below) are gathered in Table 1. To
calculate these integrals, the profile was first cubically
interpolated. Then the integral was performed numeri-
cally with the pressure interval (p2, p1) divided into 10
000 equal subintervals and using the trapezoidal rule.
The same method was used for the integrals considered
below (some of which can be checked analytically).

a. Isothermal profile

The classical variational problem for a midair at-
mospheric column is to maximize S, the mass M and
the enthalpy H being kept fixed. For S we can write,
using the definition of potential temperature,

kp p1 1c c pp p rS 5 lnT dp 1 ln dp. (7)E E 1 2g g pp p2 2

The second term does not contribute to the variation so
that dS can be written, with d lnT 5 dT/T,

p1c dTp
dS 5 dp. (8)Eg Tp2

Using a Lagrange multiplier l, we can write the vari-
ational problem as

dS 1 ldH 5 0, (9)

which leads to

p1 dT
1 ldT dp 5 0. (10)E 1 2Tp2

Since this should be true for all variations dT, we must
have

1
1 l 5 0; (11)

T

that is, T 5 2l21 is constant, thus, the profile is iso-
thermal. This is the well-known result of classical ther-
modynamics and the kinetic theory of gases. If we denote
the temperature at pressure pr by Tr, we may write

T(p) 5 T .r (12)
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TABLE 2. The parameters a and Tr for the three profiles discussed
in section 2.

Profile a Tr (K)

Isothermal
Isentropic
Intermediate

0
`

1.6868

261.36
302.04
286.90

The temperature Tr is an arbitrary constant; its most
appropriate value can be determined on the basis of the
empirical profile. In line with how we posed the vari-
ational problem (fixed H), we must require that H, ob-
tained from using (12) in (6), be equal to the empirical
value of H; this requirement yields Tr (see Table 2 and
the vertical line in Fig. 2). The value of Tr being known,
we can calculate the isothermal value of the entropy S
from (1) (see Table 1). As expected, it exceeds the em-
pirical value of S.

b. Isentropic profile

Now, in Ball [1956, Eq. (4)] it is argued that for
convective motions that mix potential temperature, mo-
lecular effects being neglected, it is to be expected that
the quantity

p1cpL 5 u dp (13)Eg p2

remains constant. This had led Bohren and Albrecht
(1998) to the formulation of an alternative variational
problem in which S is maximized under the constraints
of fixed M and L.

Their procedure perhaps requires some comment.
First of all, notice that the requirement of a fixed value
of L does not imply that Du/Dt 5 0 (which, in turn,
would imply constancy of S, and hence would render
the maximization problem meaningless); it only means
that the potential temperature is allowed to be redis-
tributed such that its vertical integral remains constant.
This indeed brings us to the broader framework dis-
cussed by Maxwell, in the sense that convective tur-
bulent motions are now taken into account, albeit im-
plicitly. Their role is to mix the potential temperature
field, to strive to homogenize it. We should now interpret
the state variables as averages over volumes that are
large compared to the size of the turbulent motions. In
particular, the first law of thermodynamics expressed in
terms of potential temperature:

Du u
5 J, (14)

Dt c Tp

now refers to volume elements of this larger scale. Even
when on the scale of the turbulence the heating rate J
would be zero, this now needs not to be the case. Indeed,
(14) is expected to have a nonvanishing right-hand side
that includes the result of convective turbulent mixing.

For this particular form of heating it makes sense to
assume that the integrated potential temperature u re-
mains constant as its main effect is to redistribute u.
The value of the integrated entropy may thus increase
despite the fact that the integrated potential temperature
remains constant. This is what the variational problem
posed by Bohren and Albrecht (1998)—maximize S for
fixed M and L—is intended to express, even though a
proper foundation of the latter constraint would require
further scrutiny.

We use a Lagrange multiplier m; the variational prob-
lem then leads to the condition

dS 1 mdL 5 0 (15)

and gives

kp1 dT pr1 m dT dp 5 0. (16)E 1 2[ ]T pp2

This implies that

k1 pr1 m 5 0; (17)1 2T p

that is, u 5 2m21 is constant, therefore, the profile is
isentropic. Thus, the result by Bohren and Albrecht
(1998) is reproduced. Denoting again the temperature
at pressure pr by Tr, we may write

kp
T(p) 5 T . (18)r1 2pr

A comparison with the empirical profile should now be
based on the constancy of L; that is, we must require
that (13) calculated with (18) reproduces the empirical
value of L [obtained by numerically integrating (13) for
the interpolated empirical profile]. This requirement
yields Tr, see Table 2; the corresponding profile of T(p),
given by (18), is shown in Fig. 2. We see that the tem-
perature gradient is considerably larger than in the em-
pirical profile.

c. Intermediate profile

The above calculations show that the result of the
maximization process depends on the constraints that
are used. Keeping M and H fixed leads to a uniform
absolute temperature (isothermal profile); keeping M
and L fixed leads to a uniform potential temperature
(isentropic profile). The principal difference between the
two is as follows: in the former, the vertically integrated
absolute temperature is kept constant (classical ther-
modynamic approach); in the latter, the vertically in-
tegrated potential temperature is kept constant (Bohren
and Albrecht 1998).

At this point one might wonder—taking for granted
that constancy of L is appropriate—whether it should
not be used as an additional, rather than as an alter-
native, constraint. Indeed, it seems more natural to use
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FIG. 3. The fraction H/L, calculated using the profile (22), as a
function of a. The lower and upper limits of the vertical axis are
0.858 79 and 0.868 51, respectively, and correspond to the isothermal
and isentropic limits. The horizontal line denotes the observed value
0.865 31, calculated from the Standard Atmosphere. The figure il-
lustrates that there is a unique value of a that reproduces the observed
value of H/L. This value is a 5 1.6868.

constancy of L as an additional constraint because the
assumption of no net heat exchange, which is the es-
sence of keeping H fixed, remains a sensible constraint
in the variational process. The problem of maximizing
S, now for fixed M, H, and L, leads to

dS 1 ldH 1 mdL 5 0. (19)

This gives, if we express both the entropy and the po-
tential temperature in terms of T,

kp1 dT pr1 ldT 1 m dT dp 5 0, (20)E 1 2[ ]T pp2

so that we should have

k1 pr1 l 1 m 5 0. (21)1 2T p

Introducing a 5 m/l, and (as before) denoting the tem-
perature at pr by Tr, we can write the requirement (21)
more conveniently as

1 1 a
T(p) 5 T . (22)r k1 1 a(p /p)r

This profile lies between the isothermal and the isen-
tropic profile: the isothermal profile (12) is recovered
in the limit a → 0; the isentropic profile (18) in the
limit a → `.

We shall compare the result (22) with the empirical
profile. There are now two constants to be determined:
Tr and a, in accordance with the fact that we required
H and L to be constant. The task of finding them is less
trivial than in the previous two cases (where only Tr

was to be determined), because of the more complicated
integrals involved. Fortunately, the two problems can
be separated because for (22), H/L depends only on a,
not on Tr. Moreover, the functional dependence is single
valued and monotonic (see Fig. 3); this figure is based
on numerical integration of H and L for (22), Tr being
immaterial. Thus, we can find a by requiring H/L to be
equal to its empirical value. Having determined a, we
can now simply obtain Tr by requiring H (or L) to be
equal to its empirical value as well. The resulting values
are given in Table 2, and the corresponding curve is
shown in Fig. 2. The profile agrees almost perfectly with
the tropospheric part of the Standard Atmosphere.

3. Concluding remarks

We reiterate that the entropy maximization problem
in its pure classical setting—that is, imposing the con-
straints of 1) a constant total mass, as well as one of
the two following constraints: 2) a constant energy E
or 29) a constant enthalpy H—will result in an isother-
mal profile, corresponding to the state of thermodynam-
ic equilibrium. This is the established classical result,
despite all the confusion that existed already a century
ago and that persists to the present day.

Of course, the actual atmosphere is subject to pro-
cesses like convective mixing. They prevent the at-
mosphere from ever coming close to thermodynamic
equilibrium, that is, the ultimate state of maximal en-
tropy. In this sense, these processes lower the maximum
value that the entropy is allowed to attain. It thus seems
natural that one should represent them by posing certain
additional constraints in the maximization problem,
considering that constraints 1 and 29 will continue to
be valid. This is the key idea of this article.

The question then arises what these constraints should
be. Here, we have taken, following Ball (1956) and
Bohren and Albrecht (1998), constancy of the integrated
potential temperature as a single additional constraint
3, but this choice is of course open for debate. In our
view, this particular constraint still lacks a solid physical
basis; yet, the above results give reason to expect that
the construction of such a basis may be possible because
the three constraints 1, 29, and 3 together lead to a
temperature profile that corresponds remarkably well to
the tropospheric part of the Standard Atmosphere.
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