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SUMMARY

An important ingredient of ensemble forecasting is the computation of initial perturbations. Various technigques
exist to generate initial perturbations. All these aim to produce an ensemble that, at initial time, reflects the
uncertainty in the initial condition. In this paper a method for computing singular vectors consistent with current
estimates of the analysis-etror statistics is proposed and studied. The singular-vector computation is constrained at
initial time by the Hessian of the three-dimensional variational assimilation (3D-Var) cost function in a way which
is consistent with the operational analysis procedure. The Hessian is affected by the approximations made in the
implementation of 3D-Var; however, it provides a more objective representation of the analysis-error covariances
than other metrics previously used to constrain singular vectors.

Experiments are performed with a T21L5 Primitive-Equation model. To compute the singular vectors we
solve a generalized eigenvalue problem using a recently developed algorithm. It is shown that use of the Hesslan
of the cost fanction can significantly influence such properties of singular vectors as horizontal location, vertical
structure and growth rate. The impact of using statistics of observational errors is clearly visible in that the amplitude
of the singular vectors reduces in data-rich areas. Finally, the use of an approximation to the Hessian is discussed.
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1. INTRODUCTION

Ensemble prediction becomes more and more part of the daily routine at various
numerical weather-prediction (NWP) centres in order to assess, a priori, whether a forecast
will be skilful or unskilful. The development of the ensemble prediction systems (EPS)
follows the pioneering work of Lorenz (1965), Epstein (1969) and Leith (1974). Central
to it is the generation of different forecasts which at initial time somehow reflect the
uncertainty in representing the initial conditions. The approaches followed by the various
NWP centres to create perturbations to the initial conditions differ substantially. At the
US National Center for Environmental Prediction the breeding method (Toth and Kalnay
1997) is used to obtain initial perturbations, and Houtekamer ef al. (1996) advocate a
generalization of this method as base for the EPS at the Canadian Meteorological Centre.
In their system simulated approach, model errors are also taken into account by allowing
different model configurations in the ensemble. At the European Centre for Medium-Range
Weather Forecasts (ECMWEF) singular vectors are used to generate initial perturbations
for the EPS, e.g. Molteni ef al. (1996).

An intercomparison of the different ensemble forecasting systems has not yet been
made but is planned in the near future. One aspect of the ensemble forecast performance
which is often observed is that the spread between the perturbed forecasts and the un-
perturbed forecast in the ensemble is smaller than the difference between the forecast
and the validating analysis (e.g. Van den Dool and Rukhovets 1994; Buizza 1995). Our
understanding of why this occurs is still fragmentary. It may be that the initial perturbations
have the wrong amplitude or are not positioned correctly. Sensitivity patterns (Rabier et al.
1996) may provide some guidance on this. For the medium range (three days onwards),
model errors certainly play an additional role in producing forecast errors. Therefore one
may argue that an EPS must also account for perturbations m model parameters. In any
case, a prerequisite for a well-defined EPS is that the initial perturbations reflect the un-
certainty of the initial conditions.
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In this paper we focus on the latter point and assume that the model is perfect. We
will determine fast-growing perturbations which at initial time are constrained by what
1$ known about analysis-error statistics as obtained from a variational data-assimilation
system. More precisely, let A be the analysis-error covariance matrix and M the forward
tangent operator of the forecast model. We are interested in perturbations which evolve
through M in the dominant eigenvectors of the error covariance matrix of the forecast error
as given by

F = MAM", (1)

where M is the adjoint of M for a particular inner product. Ehrendorfer and Tribbia (1997)
show that determining the leading eigenvectors of F provides an efficient way to describe
most important components of the forecast-error variance (see also Houtekamer (1995)).
However, in their calculations they make explicit use of the square root of A. Since the
dimension of covariance matrices in current numerical weather models is of the order 10°,
this is not a feasible assumption in an operational context. Also the direct computation of
eigenpairs of F by, for instance, applying a Lanczos algorithm to MAM?, is not possible.
This is because the analysis-error covariance matrix is not available in the variational
assimilation system. However, its inverse A~! is known: it is equal to the Hessian of the
cost function ¥ in the incremental variational data assimilation (see section 2). Moreover, in
the incremental formulation the cost function is quadratic (Fisher and Courtier 1995), and
we may write A”'x = V(X +y) — V$(y). This enables us to find dominant eigenpairs
of (1) by solving the generalized eigenvalue problem

M*Mx = 3 A" 'x. (2)

Observe that the evolved vectors Mx are eigenvectors of F. Solutions of (2) are the singular
vectors of M using the analysis-error covariance metric at initial time. In other contexts the
metric is also known as the Mahalanobis metric (e.g. Mardia ez al. 1979; Stephenson 1997).
Palmer et al. (1998) addresses the question to what extent simpler metrics approximate
the analysis-error covariance metric. Use of these simpler metrics avoids the need of a
generalized eigenvalue problem solver.

Davidsons method (Davidson 1975) and the recently proposed Jacobi-Davidson
method (Sleijpen and Van der Vorst 1996) can solve the generalized eigenvalue prob-
lem without using explicit knowledge of the operators on both sides of the equation. In
section 3 we make use of this algorithm to determine singular vectors using the three-
dimensional variational assimilation (3D-Var) Hessian as constraint at initial time. We
also consider the impact of a simpler form of the cost function, where the background
covartance matrix is replaced by a diagonal matrix so that, without using covariance in-
formation of observations, the analysis-error covariance metric becomes the reciprocal of
the total-energy metric which is currently used at ECMWF to compute singular vectors
for the EPS. The impact of background- and observational-error statistics is clearly evi-
dent through the change of the unstable subspace formed by the leading singular vectors.
Section 4 shows results on approximating the Hessian through its leading eigenpairs. This
may provide an alternative to using the generalized eigenvalue solver. Some concluding

remarks are given in section 5. In the appendix the algorithm to solve the generalized
eigenvalue problem is described. |

2. THE HESSIAN OF THE 3D-VAR COST FUNCTION

In 3D-Var the state of the atmosphere, X, is estimated by minimizing a cost function
¥ consisting of the weighted sums of the distances of x from an a priori estimate, x°, of
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the field considered and from a set of observations, y (Courtier ez al. 1998). The solution
x® is called the analysis and X* minimizes

Fx) = %(x —x")TB (x — x") + %{Hx - y'R Y Hx —y), (3)

where H stands for the operator which evaluates the observed variables for x at the obser-
vation location. The matrices B and R are covariance matrices for background errors and
observations errors, respectively. The symbol T denotes the transpose.

In the incremental formulation of 3D-Var, the nonlinear operator H is linearized in
the vicinity of the background x° : H (x) = H (x") + H(x — x), where H is the linearized
form of H. Consequently, the Hessian VV $ of the cost function may be written as

vv$=B!+HR'H. (4)
Furthermore, the cost function $ is quadratic and its gradient is zero at the unique munimum:
B x* ~x— (xX* - x"h+HR'HX —x') + Hx' —y} =0, (5)

where X' is the true state of the atmosphere. Rewriting (3) gives
B! +HR'H)(x* — x) =B~ '(x" ~ x) — H'R"'(Hx' — y). (6)

Under the additional assumption that the background and observation error are uncorre-
lated, the above equation implies that

B '+ HR'HAB ' +H'R'H)=B"! + HR'H, (7

where A denotes the covariance matrix of errors (x* — X') in the analysis. The above
identity follows by multiplying each side of (6) to the right with its transpose, and by using
the fact that B and R are the covariance matrices of (x* — x") and (HxX" — v), respectively,
and B! + H'R'H is a symmetric matrix. Combining (4) and (7) we conclude that the
Hessian of the cost function is equal to the inverse of the analysis-error covariance matrix
(see also Rabier and Courtier 1992; Fisher and Courtier 1993).

Indeed, this identity is only true insofar as the background B and observation R error
covariance matrix have been correctly specified. In practice, many approximations are
made in 3D-Var and the analysis is not optimal, so that in principle the estimation of the
genuine A can only be done by a much more complicated Kalman-filter-like algorithm as
presented by Bouttier (1994). It is hoped that this will be implemented in the future 1n a
simplified form of Kalman filter. In this paper we use the 3D-Var Hessian as a surrogate
for the inverse analysis-error covariance matrix. The main problem with doing so 1s in the
approximations made in the B matrix, and it will be demonstrated in what follows that the
singular vectors are indeed sensitive to the specification of B.

Currently the B matrix is based upon error statistics derived from the difference
between two-day and one-day forecasts verifying at the same day (commonly known as
the NMC method, Parrish and Derber (1992)). The statistics obtained for a period of 90
consecutive days extending from December 1992 to February 1993 are documented in
Rabier et al. (1998). Power spectra of the error statistics indicate that the energy spectrum

peaks around total wave number 10. Thépaut et al. (1996) have compared power spectra
of 3D-Var and 4D-Var analysis increments in the vicinity of an extratropical storm. The

4D-Var approach clearly allowed for more energy in total wave numbers larger than 10.
The NMC method is very efficient in estimating time-averaged global background-error
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covariances which are well suited for data assimilation. Some cross-validation with other
covariance estimation methods shows no evidence of any mismatch between the average
structures of the forecast-error differences and of the short-range forecast errors themselves
(Rabier et al. 1998). However, it is likely that the average covariance structures are not
optimal in dynamically unstable areas. This is going to affect the Hessian itself, as the
numerical results of section 3(a) suggest. It might be possible to optimize the B matrix for
the specific needs of the singular-vector computation; however, it is not yet clear how to
do so.

The central point made in this paper is that, despite these caveats, the 3D-Var Hessian
provides a more realistic metric than simpler norms like total energy, or like the metric
implied by B itself. This is because the Hessian contains a term, H'R™'H, which is related
to the observing network. Some low-resolution experiments (Bouttier 1994) suggest that
the main effect of observations is to decrease the error variances and to sharpen the analysis-
error correlations in data-rich areas. Hence one expects the Hessian metric to penalize the
singular vectors more realistically than previously used norms, at least in data-rich areas.

3. THE ANALYSIS-ERROR COVARIANCE METRIC

In the computation of singular vectors it is necessary to specify a norm at initial time
fy and at optimization time #,. In this section, singular vectors & are considered which

maximize the ratio
(Pe(1)), EPe(1))
(e(f), Ce(ry))

Here (,) denotes the Euclidean inner product (X, y) = x'y. The positive definite and sym-
metric operators € and E induce a norm at initial and optimization time, respectively. The
operator P is a projection operator setting a vector to zero outside a given domain, e.g. south
of 30°N as in this paper. The first singular vector SV1 maximizes the ratio (8), the second
singular vector SV2 maximizes (8) in the subspace C-orthogonal to SV, and so forth.
The evolved singular vectors form an E-orthogonal set at optimization time. Alternatively,
these singular vectors are solutions of the following generalized eigenvalue problem,

(8)

M'P'EPMXx == ACX. (9

The adjoint operators M* and P* are determined with respect to the Fuclidean inner product.
In the computation of the singular vectors for the ECMWEF EPS the total energy metric is
used at mnitial and optimization time, i.e. E and C are identical and

1 /! |
(x, Ey) = Ef f (va“ig;_ VAL, +VAT'D, . VA™'D,
{t E "

J i
+E£T;;T-,:) dx (f’,) dn + —f RyT.Inm, - In Ty dx, (10)
7. ‘ an 2 Jx

with (£, D,, T, In ) being the vorticity, divergence, temperature and logarithm of the
surface pressure components of the state vector X, ¢, the specific heat of dry air at constant
pressure, p(n) the pressure at eta levels (0 = surface and 1 == top of atmosphere), R, the
gas constant for dry air, 7, = 300 K a reference temperature and ¥ denoting integration
over a sphere,

In this case C (= E) has the form of a diagonal matrix and the square root of C
can be readily determined. Multiplying both sides of (9) to the left and right with the
inverse of the square root of € yields an equation which can be solved using the Lanczos
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Figure 1. Stream-function fields of the three leading initial total-energy singular vectors at 500 hPa for G000 Utc

I Navember 1995 and an optimization time of one day. Solid {(dashed) lines denote positive (negative) values and

the contour interval is 5 x 1078 m2s— 1,

algorithm (Strang 1986). Palmer ef al. (1998) study the impact of choosing different simple
metrics at initial time, keeping the total energy metric at optimization time. The spectra
of the singular vectors can differ substantially for the various metrics. It turns out that,
of the simple metrics considered, the total energy metric 1s the most consistent with the
analysis-error statistics.

To study the impact of the analysis-error covariance metric on the singular vectors
we used a five-level version of the ECMWF Integrating Forecast System model (Simmons
et al. 1989; Courtier et al. 1991) with a triangular truncation at wave number 21 and a
simple vertical diffusion scheme (Buizza 1994). The model levels are at 100, 300, 500, 700
and 900 hPa. The initial time for the singular vector computation is 0000 urc 1 November
1995 and the optimization time is one day.

Figure 1 shows the stream-function fields of the first three total-energy singular vec-
tors (TESV) at 500 hPa, i.e. the total-energy metric 1s used at both initial and optinization
time. The two leading TESVs (Figs. 1(a) and (b)) are over the Asian area and the third SV
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Figure 2. Vertical cross-section of the total-energy distribution of the ten leading total-energy singular vectors

with respect to the five model levels. The dashed line represents the initial profile and the solid line represents the

energy after 24 hours of linear integration. The energy in m®s! at initial and final time has been multiplied by
factors of 10U} and 5 respectively.

is located over the Pacific. The vertical distributions of energy in the singular vectors at
mnitial and optimization time are given in Fig. 2, It shows that the energy at initial time is
confined to near the baroclinic steering level. During time evolution the energy propagates
upwards and downwards, indicating error growth (Buizza and Palmer 1995).

When C is specified to be equal to the full Hessian of the 3D-Var cost function, the
operator C 1s not known in matrix form, and determining its square root is not feasible. In
order to solve (9), a generalized eigenvalue problem solver, called the generalized Davidson
method, is used (see appendix). This algorithm can solve (9) efficiently and requires only
the ability to calculate y = Sx, where S is any of the operators M, P, E and C. No explicit
knowledge of any operator is needed. In the following we assume that the total energy
metric is always used at optimization time.

To 1mprove the performance of the generalized Davidson algorithm, a coordinate
transformation y = L~'x was carried out with LL' = B. Applying the transformation L,
the Hessian becomes equal to the sum of the identity and a matrix of rank less than or equal
to the dimension of the vector of observations (see also Fisher and Courtier (1995)). Thus,
when no observations are used in the cost function, the transformed operator (L~")"CL ™!
1s the identity, and the proposed algorithm is equivalent to the Lanczos algorithm (see
appendix). Observe that a similar coordinate transformation was used to compute the
TESVs. Defining singular vectors using the total energy metric at initial time may be
interpreted as using a background-error covariance matrix B with the assumption of no
horizontal and vertical correlation of forecast error.

(@) Univariate background-error covariance matrix
In the following, we refer to solutions of (9) using the full Hessian of the 3D-Var cost

first three HSVs at 500 hPa when no error statistics of observations are used. The horizontal
structure 1s more large-scale compared to the TESVs and the location of the amplitude
maxima has changed completely. Also the vertical structure of the HS Vs is quite different
tfrom the TESVs (see Fig. 4). Most of the HSV total energy is initially confined to the
upper levels. At optimization time the vertical energy distribution of the TESVs and HSVs
is comparable, although the total-energy amplification in the case of the HSVs is clearly
smaller (see Fig. 5). It appears that the TESVs grow approximately twice as fast as the
HS Vs in terms of total energy. The large-scale structure and energy distribution of the HSVs
is to a large extent determined by the formulation of the background covariance matrix. As
explained m section 2, the distribution of the background-error variance (estimated using



Figure 3. Same as Fig. 1 but for the Hessian singular vectors without observations,
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Figure 4. Same as Fig. 2 but for the Hessian singular vectors without observations.
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Figure 5.  Amplification factor of the ten leading total-energy singular vectors (solid line) and Hessian singular
vectors without observations (dashed line), as given by the square root of the ratio between the total energy at final
and initial time,

forecast differences) reaches a maximum near the jet level, and this is reflected in the
metric defined by the Hessian. Also, the background-error covariance matrix is specified
to have broad horizontal and vertical correlations, and thus penalizes the occurrence of
baroclinic structures in the analysis error. Hence we may suspect that the 3D-Var Hessian
metric penalizes the sharp and baroclinic error patterns too much in the areas which are
picked up by the singular vector computation.

Another way to highlight the differences between the TES Vs and HSVsis to determine
the similarity index of two unstable subspaces (Buizza 1994). To that end a Gram—Schmidt

procedure is applied to the first ten TESVs and HSVs at initial time, Denote by WH and
WE the space thus obtained in the case of the HSVs and TESVs, respectively:
WHIE = gpan{v,™, j=1,...10}. (11)

The similarity index ¥ of the two unstable subspaces WH and WTE ig then defined by

| ' 1 i0
FWH,WE) = — 3 (v, vF), (12)
10 Jok=1

where {, ) 1s the inner product associated with the total-energy norm. The similarity index
& goes from 1 for parallel unstable subspaces to O when the subspaces are orthogonal. The
similarity index between the TESV and HSV unstable subspaces is only 0.06 indicating
the different nature of the TESVs and HSVs. When subspaces were used spanned by the
leading 15 singular vectors, the similarity index increased slightly to 0.11.
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The impact of observational locations and errors on the HSVs was studied using
covariance information from most of the conventional observations (SYNOP, AIREP,
SATOB, DRIBU, TEMP, PILOT, SATEM and PAOB) from two areas: EUR (20°W=-20°E;
30°N—80°N} and PAC (170°W-130°W; 30°N-80°N). Figures 6(a)-(c) show the first three
HSVs at 500 hPa using observations from EUR. Compared to the HSVs without observa-
tions (Fig. 3), the amplitudes of the leading HSVs over EUR have decreased substantially.
Including observational-error statistics left the vertical structure of the HSV basically un-
altered (not shown). The similarity index of the two unstable subspaces, i.e. formed by
HSVs computed with and without covariance information of observations from EUR, and
spanned by the ten leading FISVs, is 0.79. Repeating the same for PAC gave simtlar results
(see Figs. 6(d)~(f)). The amplitude of the $Vs is now reduced over the PAC area at initial
time. A comparison of the two unstable subspaces computed in the same way as the EUR
yields a similarity index of 0.73.

(b) Total-energy background covariance matrix with observations

In order to investigate the impact of covariance information from observations on
the TESVs, the 3D-Var background-error covariance matrix in the generalized eigenvalue
calculation (9) was modified to a diagonal matrix whose diagonal contained the reciprocal
of the total-energy weights (see (10)). The SVs are now computed in terms of the control
variable y and we checked that, without observations, the same SVs resulted in terms of
the model variables as defined by (9).

The SVs computed without observations do not depend on the scaling of the back-
ground covariance matrix. However, in order to account reasonably well for the way the
obsetrvations are used in the 3D-Var analysis procedure, one needs to ensure that the relative
magnitude of the background- and observation-error variances is balanced. Performing an
analysis procedure with the modified background covariance matrix should give analysis
increments which are consistent with the amplitude of the operational analysis increments.
The appropriate magnitude of the total-energy background-error covariance matrix was
determined by computing the analysis increments at a particular observation point for
different scalings of the matrix and selecting one that implies sensible amplitudes for the
increments.

In the 3D-Var analysis procedure, the analysis increments, X* — x”. are a linear com-
bination of the observation increments, y — Hx®, (Lorenc 1986; (A.9)):

x* — x” = BHI(HBH" + R)"!(y — Hx"), (13)

where H is the linearization of the observation operator H in the vicinity of the background
x”. In the case of one observation, H' reduces to a vector h' of the same dimension as
the model state vector, and the specified background error o for the observed parameter

satisfies o2 = hBh'. Denoting the observation variance by o, (13) can be written as

— Hx?
%t — x = Bh' (" ) . (14)

oy +0;

Applying h to both sides of (14) yields for the analysis increments at the observation point

_— b 2
h(x* —x") = hBh' (y Hx ) = ( i ) (y — Hx"). (15)

of + ol of + o

Using the linearization H of the observation operator in the vicinity of the background, we
may write to first order
h(x* — x*) = Hx* — Hx". (16)
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Figure 6. Same as Fig. 3 but for Hessian singular vectors with observations from (a)-(c) BEUR (20°W-20°K:
30°N-80°N} and (d)(f} PAC (170°W-13(°W; 30°N-8(°N}.
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Figure 7. Same as Fig. 1 but now with observations from the northern hemisphere extratropics.

Combining (15) and (16) we obtamn

5 , r ) Hx® — Hx"
Oy =0, - , With 7 = v —Ho (17)

To determine the appropriate magnitude of the variances in B, a 3D-Var minmmization
was performed using error statistics of only one observation. The scaling of B was tuned
so that the o, estimated from (17) is approximately equal to o, in the case of an AIREP
observation of temperature at 500 hPa (¢, = 2 K). These values for o, and &, are assumed
to be reasonable approximations of actual errors for temperature in the areas of interest
for the SVs.

Figure 7 shows the three leading TESVs when covariance information of observations
is included in the computation. The same type of observations are used as for PAC and
EUR but now for the northern hemisphere extratropics (30°N-90°N). Observe that the
leading SVs are located over the oceans. Most of the observational data over the oceans
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are from satellites, which have less weight in the 3D-Var cost function than conventional
data. Comparing these SVs with the TESVs when no observational information is used
(see Fig. 1) yields a similarity index of 0.5. We conclude that incorporating statistics of
observational errors in the SV computation may change the unstable subspace considerably.

4.  APPROXIMATION OF THE HESSIAN

A possible alternative to using a generalized eigenvalue problem solver is to replace
the full Hessian B~ + H'R~"H (see (4)) by an approximating operator which can easily
be inverted. In this way, solving a generalized eigenvalue problem can be reduced to solving
an ordinary eigenvalue problem. As noted in section 3, the Hessian in terms of the control
vector y = L'x is the sum of the identity I and a matrix of rank less than or equal to the
number of observations, and can be written as (see also Fisher and Courtier 1995);

X
1+ ) (h — Duu], (18)
fu]

where A; and w; are eigenpairs of the Hessian and K denotes the number of obser-
vations. Observe that indeed {1 4 Zf; (A — Dugul Yo, = wg + (A — Dug = Ay, for
k=1,... K, because of the orthogonality of the eigenvectors u;. Since the Hessian can
be written in the form (18), the square root of the inverse of the Hessian can be readily

determined using the Sherman—Morrison and Woodbury formula (Wait 1979) and it is
given by

Ko7/ 1
I+ (% - 1.) TRV (19)
2\ 7

Multiplying both sides of (9) to the left and right with the above operator yields an eigen-
value problem which again can be solved with the Lanczos algorithm.

We consider two situations to see how well SVs with an approximated Hessian com-
pared to SVs obtained without approximation of the Hessian, In the first experiment (E1)
the full background covariance matrix B was used together with covariance information
for observations from EUR. In the second experiment (E2) a diagonal background-error
covariance matrix was used with the inverse of the total-energy weights as variances and
with observational statistics for observations from the northern hemisphere extratropics.
The same observation sets are used as in section 3(a). Table 1 gives, for each experiment
El and E2, the similarity index between the unstable subspace formed by the leading ten
SVs thus obtained and the SVs in the case where the Hessian is approximated by 100 or
150 eigenvectors. Clearly, the leading singular vectors computed with an approximated

TABLE 1. SIMILARITY INDICES BETWEEN

THE UNSTABLE SUBSPACES FOR TWO EXPER-

IMENTS, WITH THE HESSIAN APPROXIMATED
USING 10 AND 150 EIGENPAIRS.

Number of eigenpairsused 100 150

Experiment El 071 0.83
Experiment E2 63 074

See text for explanation.
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Figure 8. Stream-function fields at 500 hPa of the three leading Hessian singular vectors using 150 eigenpairs
in the approximation of the Hessian and observations from EUR (20°W-20°E; 30°N-80°N). Solid {dashed) lines

denote positive (negative) values and the contour interval is 5 x 107% m%s™".

Hessian, based on 150 eigenpairs, capture reasonably well the dominant part of the unsta-
ble subspace obtained with the full Hessian. Figure 8 shows the stream-function fields at
500 hPa of the first three singular vector for experiment El. In particular, the first singular
vector compares well with the corresponding HSV computed with the full Hessian (see
Fig. 6(a)).

5. FINAL REMARKS

This paper considers the choice of the inner product to be used to define singular
vectors for the ECMWEF EPS. In the context of predictability experiments one would like
to determine the leading eigenpairs of the forecast-error covariance matrix. The use of a
metric which incorporates the second moment of the analysis-error probability distribution
satisfies this requirement. A practical problem in using this metric (which we refer to as the
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analysis-error covariance metric) to determine singular vectors is that it requires an efficient
solution of a generalized eigenvalue problem. Because of the difficulty of solving such a
system, the calculation of singular vectors up to now has been based on an energy metric,
which may be interpreted as an approximation of the analysis-etror statistics (Palmer
et al. 1998). With this approximation, the singular vectors can be efficiently computed by
applying the Lanczos algorithm to the propagators of the tangent and adjoint model.

The method described in this paper uses the full Hessian (or second derivative) of the
cost function of the variational data assimilation as an approximation to the analysis-error
covariance metric. In this way the calculation of singular vectors can be made consistent
with the 3D/4D-Var calculation of the analysed state. The algorithm to solve the generalized
eigenproblem is a generalization of the Davidson algorithm (Davidson 1975). It requires
only that the propagators of the linear and adjoint model and the Hessian of the cost
function are available in operator form, i.e. y = Sx can be computed, where S is any of
these operators and x is an input vector.

We used the Hessian from different configurations of the 3D-Var cost function. When
no observations are used in 3D-Var, the analysis-error metric is entirely based on the
description of the first-guess error. Currently the first-guess error statistics are derived
from the difference between the two-day and one-day forecast valid for the same day (the
so-called NMC method, Parrish and Derber (1992)). The background covariance matrix
defined in this way penalizes the occurrence of baroclinic structures in the analysis error
and it lacks a realistic description of small-scale error structures. Experiments with a five-
level PE model gave singular vectors which are of larger scale than the singular vectors
defined in terms of the total-energy metric. Also, the vertical structure of the singular
vectors revealed a difference with respect to the energy distribution. Most of the energy
is confined to the upper levels when the Hessian was used, instead of peaking around the
baroclinic steering level as in the case of total-energy singular vectors. Including covariance
information of observations in the Hessian mainly changed the location of the maxima of
the singular vectors. The amplitude of the singular vectors was reduced substantially over
the areas where observations were present.

The impact of observational-error statistics on the singular vectors which are used in
the ECMWF EPS was investigated by modifying the background-error covariance matrix.
By setting this matrix to a diagonal matrix with the inverse of the total-energy weights on
its diagonal, the total-energy singular vectors are retrieved when no observations are used.
Using most of the conventional observations from the northern hemisphere extratropics
leads to a significant change of the unstable subspace as spanned by the leading singular
vectors. This may have consequences for the set-up of future observational experiments
such as Fronts and Atlantic Storm Tracks Experiment. The areas to perform adaptive
observations as indicated by the leading singular vectors may change when statistics of
observational errors are included in the singular-vector computation.

Although the proposed algorithm is of the order of three times more expensive com-
putationally than the Lanczos algorithm, there is scope to improve upon this. One way is
to reduce the number of observations without essentially changing the 3D-Var analysis
procedure. Another possibility would be to approximate the Hessian through its leading
eigenpairs. By doing so, the Lanczos algorithm can again be used to determine singular
vectors. Preliminary experiments showed that by using a considerable number (150) of
eigenpairs in the approximation of the Hessian, the dominant part of the unstable subspace
could be reasonably well retrieved. The additional computation time needed to determine
150 eigenpairs of the Hessian is around 10% of the time to solve the Lanczos problem.

The background covariance matrix is an important part of the singular-vector com-
putation when the Hessian is employed. The quite different results for the total-energy
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and full-background covariance matrix indicate that some effort must be put into correctly
modelling the background error. It seems that neither the 3D-Var nor the total-energy
background-error metric are completely satisfactory for the calculation of singular vec-
tors: the implied correlation structure seems respectively, either too broad or too sharp. A
first improvement would be to optimize the 3D-Var background-error term for areas which
are pointed to by the singular vectors. One can also use the 4D-Var Hessian. A definite
answer to the problem will only come when some flow-dependent error covariances are
estimated using a simplified Kalman filter. These approaches are being tried at ECMWE.
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APPENDIX

The generalized eigenproblem
AX = ABX (A.1)
is usually handled by bringing it back to a standard eigenproblem
| B 'Ax = Ax. (A.2)

The matrix B™'A is in general non-symmetric, even if both A and B are symmetric.
However, if B is symmetric and positive definite, the B inner product is well defined. The
matrix B~'A is symmetric in this inner product if A is symmetric:

(w, B"'Av)g = (Bw, B~'Av) = (W, Av) = (Aw, v) = (B™'Aw, V), (A3)

where w and v are arbitrary vectors. The proposed method to solve (A.1) constructs a set of
basis vectors V of a search space V', cf. the Lanczos method (Lanczos 1950; Strang 1986).
The approximate eigenvectors are linear combinations of the vectors V. The classical and
most natural choice for the search space %, for instance utilized in the Lanczos method, 1s
the so-called Krylov subspace, the space spanned by the vectors

v, B 'Av, (B7TA)v, ..., (B7TA) . (A4

This i-dimensional subspace is denoted by X' (v, B~'A). The vector v is a starting vector
that has to be chosen. The Krylov subspace is well suited for computing dominant eigen-
pairs since the vector (B~'A)~'v has a (much) larger component in the direction of the
dominant eigenvector than v.

In the next three subsections we will discuss how approximate eigenpairs can be
computed from a given subspace, how a B-orthogonal basis for the Krylov subspace can
be constructed, and how operations with B~! can be avoided in the construction of the
basis. This last subject is of particular importance in our application, since we have no
explicit formulation of B and we can only calculate y = Bx for an input vector X.
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How to compute approximate eigenpairs

Given a search space V' the approximate eigenpair (¢, u) is a linear combination of
the basis vectors of V"

u = Vy. (A.5)

A suitable criterion for finding an optimal pair (8, u) is the Galerkin condition that
the residual

r=B""Au— fu=B"'AVy — #Vy (A.6)
is B-orthogonal to the search space V. Hence
VBr=0 (A7)
and consequently, using (A.6),
VIAVy — gVTBVy = 0. (A.8)

Note that the resulting eigenproblem is of the dimension of the search space, which
is generally much smaller than that of the original problem. The basis vectors are usually
orthogonalized so that VBV = 1. Approximate eigenpairs that adhere to the Galerkin
condition are called Ritz pairs,

Construction of a basis for the Krylov subspace

It approximate eigenpairs are computed according to (A.8), then the residuals r;,
r2, ..., r; forma B-orthogonal basis for %' (r;,B~!A). The B-orthogonality

r'Br; =0 (A9)

of the residuals r; follows immediately from their construction. According to (A.8) it is true
fori < j.Since B is symmetric the inner product is symmetric in i and j, and consequently
it also holds for i > j.

It remains to show that the residuals form a basis for this Krylov subspace. Given a
(t — I)-dimensional search space, the Galerkin condition (A.8) yields i — 1 approximate
eigenpairs and residuals. The search space can be extended with any of these residuals.
Each selected residual r; will be a new B-orthogonal basis vector for X' (v, B"IA):

span{r;, ry, ..., =% (r;, B~TA). (A.10)
This can be seen by noting that the residual is given by (see (A.6))
r,=B"Auy ~ 6 _u,_, =BAV,_,yi.; — 6, Vi_¥i1, (A.11)
with (6;_;, w;_,) an eigenpair approximation in the space ¥'~'(r;, B-'A). Since
B AV, vi € X' (r;, B'A), (A.12)
the residual r; also belongs to I’ (r;, B~'A). Because r; cannot be expressed as a linear

combination of r, with k£ < i — 1 we conclude that r; is a new basis vector of %' (r, B~'A).
Note that the residual is zero only if there is an eigensolution. -
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Solution method

As was stated before, the natural search space for the generalized eigenvalue problem
is the Krylov subspace ' (v, B~'A). This basis can be generated by expanding the basis
by new residual vectors. The problem in the construction of a basis for this space is that
operations with B! are needed. Since in our application the inverse of B 1s not known
explicitly, we approximated its action by an iterative solution method, like the Conjugate
Gradient method (CG) (Hestenes and Stiefel 1954) or the Conjugate Residual method
(CR) (Cline 1976). To compute the vector

r=B'T, (A.13)

one iteratively solves the system
Br =T. (A.14)

Iterative solution methods require, apart from vector operations, only multiplications with
B. The vector r can in principle be determined to high accuracy. This, however, may require
many multiplications with B and hence may be very expensive. We therefore propose 10
approximate the action of B to low accuracy only, by performing only a few steps with an
iterative solution method. The subspace generated in this way is not a Krylov subspace and
the basis vectors are not the residuals (A.6) but only approximations to it. As a consequence
they are not perfectly B-orthogonal. Orthogonality has to be enforced explicitly.
The algorithm we use can be summarized as follows:

s Select number of CR steps, maximum dimension of V, starting vector v.
o Compute Bv, B-normalize v.

e Do i = 1 until maximum dimension of V:

. compute AV, VIAV,

solve small eigenproblem V'AVy = 8y,

. select v, Ritz value 6,

. compute Ritz vector u = Vy and residual ¥ = AVy — 6BVy,

. compute approximately v = B~'F with the CR method,

. B-orthonormalize new v against V,

. expand V with the resultimg vector.

The matrix V contains the basis for the search space, the vector v contains the new
basis vector, and (u, #) is an approximate eigenpair. In step 3 the pair with the largest 8 1s
selected since we are interested in the upper part of the spectrum. However, if the eigenpair
approximation reaches a certain accuracy ¢,i.e. ¥ = Au — 6Bu < ¢, a smaller 6 is selected.
In step 5 a few CR steps are performed to approximate the action of B~'. Another iterative
solution, e.g. CG, could also be used. The optimal number of CR iterations depends mainly
on the cost of operations with B. If these are expensive the number of CR iterations should
be kept small. In our experiments the number of CR steps per iteration is 15. Evaluation of
A and B is then computationally equally expensive. In step 6 the modified Gram-—-Schmidt
procedure is used for reasons of numerical stabaility.

Relation with standard methods

The above method is closely related to Davidson’s method (Davidson 1975) for solv-
ing the standard eigenproblem. The difference is that we try to approximate B! by means
of an iterative solution method, whereas in Davidson’s method the action of (A — 8I) ! is
approximated. The purpose of this is to speed up convergence. The way to construct the
basis for the search space is the same, however. Both methods compute residuals based
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on Galerkin approximations for the eigenpairs. Recently, an improvement over David-
son’s method has been proposed by Sleijpen and Van der Vorst (1996), the so called
Jacobi-Davidson method. The essential difference between the Davidson method and the
Jacobi-Davidson method is that in the latter the action of (A — #I)~! is approximated in the
space orthogonal to the Ritz vector u. Sleijpen et al. (1996) give a framework for Davidson
and Jacobi-Davidson type methods to solve generalized and polynomial eigenproblems.
The method described above can be seen as a generalized Davidson method. If the action
of B~! is approximated to machine accuracy, or if B =1, the eigenpair approximations
should be the same as the ones obtained with the Lanczos method.
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